Past Forthcoming Seminars

E.g., 2020-04-08
E.g., 2020-04-08
E.g., 2020-04-08
9 March 2020
15:45
Abstract

In practice, it is standard to initialize Artificial Neural Networks (ANN) with random parameters. We will see that this allows to describe, in the functional space, the limit of the evolution of (fully connected) ANN when their width tends towards infinity. Within this limit, an ANN is initially a Gaussian process and follows, during learning, a gradient descent convoluted by a kernel called the Neural Tangent Kernel. 

This description allows a better understanding of the convergence properties of neural networks, of how they generalize to examples during learning and has 

practical implications on the training of wide ANNs. 

  • Stochastic Analysis & Mathematical Finance Seminars
9 March 2020
15:45
Radhika Gupta
Abstract

The mapping class group of a surface is associated to its Teichmüller space. In turn, its boundary consists of projective measured laminations. Similarly, the group of outer automorphisms of a free group is associated to its Outer space. Now the boundary contains equivalence classes of arationaltrees as a subset. There exist distinct projective measured laminations that have the same underlying geodesic lamination, which is also minimal and filling. Such geodesic laminations are called `non-uniquely ergodic'. I will talk briefly about laminations on surfaces and then present a construction of non-uniquely ergodic phenomenon for arational trees. This is joint work with Mladen Bestvina and Jing Tao.

9 March 2020
14:15
MARIELLE SIMON
Abstract


During this talk we will be interested in a one-dimensional exclusion process subject to strong kinetic constraints, which belongs to the class of cooperative kinetically constrained lattice gases. More precisely, its stochastic short range interaction exhibits a continuous phase transition to an absorbing state at a critical value of the particle density. We will see that the macroscopic behavior of this microscopic dynamics, under periodic boundary conditions and diffusive time scaling, is ruled by a non-linear PDE belonging to free boundary problems (or Stefan problems). One of the ingredients is to show that the system typically reaches an ergodic component in subdiffusive time.

Based on joint works with O. Blondel, C. Erignoux and M. Sasada

  • Stochastic Analysis & Mathematical Finance Seminars
9 March 2020
14:15
Thomas Madsen
Abstract

Exceptional holonomy manifolds come with certain geometric data that include a Ricci flat metric. Finding examples is therefore very difficult. The task can be made more tractable by imposing symmetry.  The focus of this talk is the case of torus symmetry. For a particular rank of the torus, one gets a natural parameterisation of the orbit space in terms of so-called multi-moment maps. I will discuss aspects of the local and global geometry of these 'toric' exceptional holonomy manifolds. The talk is based on joint work with Andrew Swann.

  • Geometry and Analysis Seminar
9 March 2020
12:45
Carlo Meneghelli
Abstract

In this talk, I will argue how the observation that four-dimensional N=2 superconformal field theories are interconnected via the operation of Higgsing can be turned into an effective method to construct such SCFTs. A fundamental role is played by the (generalized) free field realization of the associated VOAs.

  • String Theory Seminar
6 March 2020
15:00
John Harvey
Abstract

The reach is an important geometric invariant of submanifolds of Euclidean space. It is a real-valued global invariant incorporating information about the second fundamental form of the embedding and the location of the first critical point of the distance from the submanifold. In the subject of geometric inference, the reach plays a crucial role. I will give a new method of estimating the reach of a submanifold, developed jointly with Clément Berenfeld, Marc Hoffmann and Krishnan Shankar.

  • Topological Data Analysis Seminar
6 March 2020
14:00
James Munro and Mareli Grady
Abstract

Have you ever had to explain mathematics to someone who isn’t a mathematician? Maybe you’ve been cornered at a family gathering by an interested relative. Maybe you’d like to explain to a potential employer what you’ve been doing for the last three years. Maybe you’ve agreed to explain vector calculus to a room of 13-year-olds. We’ve all been there. This session will cover some top tips for talking about maths in a way that makes sense to non-mathematicians, with specific examples from the outreach team.

6 March 2020
14:00
Professor Adriana Dawes
Abstract

During development, cells take on specific fates to properly build tissues and organs. These cell fates are regulated by short and long range signalling mechanisms, as well as feedback on gene expression and protein activity. Despite the high conservation of these signalling pathways, we often see different cell fate outcomes in similar tissues or related species in response to similar perturbations. How these short and long range signals work to control patterning during development, and how the same network can lead to species specific responses to perturbations, is not yet understood. Exploiting the high conservation of developmental pathways, we theoretically and experimentally explore mechanisms of cell fate patterning during development of the egg laying structure (vulva) in nematode worms. We developed differential equation models of the main signalling networks (EGF/Ras, Notch and Wnt) responsible for vulval cell fate specification, and validated them using experimental data. A complex, biologically based model identified key network components for wild type patterning, and relationships that render the network more sensitive to perturbations. Analysis of a simplified model indicated that short and long range signalling play complementary roles in developmental patterning. The rich data sets produced by these models form the basis for further analysis and increase our understanding of cell fate regulation in development.

  • Mathematical Biology and Ecology Seminar
5 March 2020
16:00
to
17:30
Jessica Williams and Andrew Krause
Abstract


Heterogeneity in Space and Time: Novel Dispersion Relations in Morphogenesis

Dr. Andrew Krause

Motivated by recent work with biologists, I will showcase some results on Turing instabilities in complex domains. This is scientifically related to understanding developmental tuning in the whiskers of mice, and in synthetic quorum-sensing patterning of bacteria. Such phenomena are typically modelled using reaction-diffusion systems of morphogens, and one is often interested in emergent spatial and spatiotemporal patterns resulting from instabilities of a homogeneous equilibrium. In comparison to the well-known effects of how advection or manifold structure impacts the modes which may become unstable in such systems, I will present results on instabilities in heterogeneous systems, reaction-diffusion systems on evolving manifolds, as well as layered reaction-diffusion systems. These contexts require novel formulations of classical dispersion relations, and may have applications beyond developmental biology, such as in understanding niche formation for populations of animals in heterogeneous environments. These approaches also help close the vast gap between the simplistic theory of instability-driven pattern formation, and the messy reality of biological development, though there is still much work to be done in concretely demonstrating such a theory's applicability in real biological systems.
 

Cavity flow characteristics and applications to kidney stone removal

Dr. Jessica Williams


Ureteroscopy is a minimally invasive surgical procedure for the removal of kidney stones. A ureteroscope, containing a hollow, cylindrical working channel, is inserted into the patient's kidney. The renal space proximal to the scope tip is irrigated, to clear stone particles and debris, with a saline solution that flows in through the working channel. We consider the fluid dynamics of irrigation fluid within the renal pelvis, resulting from the emerging jet through the working channel and return flow through an access sheath . Representing the renal pelvis as a two-dimensional rectangular cavity, we investigate the effects of flow rate and cavity size on flow structure and subsequent clearance time of debris. Fluid flow is modelled with the steady incompressible Navier-Stokes equations, with an imposed Poiseuille profile at the inlet boundary to model the jet of saline, and zero-stress conditions on the outlets. The resulting flow patterns in the cavity contain multiple vortical structures. We demonstrate the existence of multiple solutions dependent on the Reynolds number of the flow and the aspect ratio of the cavity using complementary numerical simulations and PIV experiments. The clearance of an initial debris cloud is simulated via solutions to an advection-diffusion equation and we characterise the effects of the initial position of the debris cloud within the vortical flow and the Péclet number on clearance time. With only weak diffusion, debris that initiates within closed streamlines can become trapped. We discuss a flow manipulation strategy to extract debris from vortices and decrease washout time.

 

  • Industrial and Applied Mathematics Seminar

Pages