Brooke Benjamin Lecture (past)

Wed, 17/10/2012
17:00
Professor Yves Couder (Université Paris Diderot) Brooke Benjamin Lecture Add to calendar L1

Wave-particle duality is a quantum behaviour usually assumed to have no possible counterpart in classical physics. We revisited this question when we found that a droplet bouncing on a vibrated bath could become self-propelled by its coupling to the surface waves it excites. A dynamical wave-particle association is thus formed.Through several experiments we addressed the same general question. How can a localized and discrete droplet have a common dynamics with a continuous and spatially extended wave? Surprisingly several quantum-like behaviors emerge; a form of uncertainty and a form of quantization are observed. I will show that both properties are related to the "path memory" contained in the wave field. The relation of this experiment with the pilot-wave models proposed by de Broglie and by Bohm for quantum mechanics will be discussed.

Wed, 16/11/2011
17:00
Professor Vladimir Zakharov (University of Arizona) Brooke Benjamin Lecture Add to calendar L1

The self-consistent analytic theory of the wind-driven sea can be developed due to the presence of small parameter, ratio of atmospheric and water densities. Because of low value of this parameter the sea is "weakly nonlinear" and the average steepness of sea surface is also relatively small. Nevertheless, the weakly nonlinear four-wave resonant interaction is the dominating process in the energy balance. The wind-driven sea can be described statistically in terms of the Hasselmann kinetic equation.

This equation has a rich family of Kolmogorov-type solutions perfectly describing "rear faces" of wave spectra right behind the spectral peak.

More short waves are described by steeper Phillips spectrum formed by ensemble of microbreakings. From the practical view-point the most important question is the spatial and temporal evolution of spectral peaks governed by self-similar solutions of the Hasselmann equation. This analytic theory is supported by numerous experimental data and computer

simulations.   

Wed, 19/05/2010
17:00
Professor Tom Mullin (University of Manchester) Brooke Benjamin Lecture Add to calendar L1
Thu, 22/05/2008
17:00
Howard Stone (Harvard University, USA) Brooke Benjamin Lecture Add to calendar L2
The lecture will describe two variants of thin film flows, one involving wetting and the other involving evaporation. First, describing the spreading of mostly wetting liquid droplets on surfaces decorated with assemblies of micron-size cylindrical posts arranged in regular arrays. A variety of deterministic final shapes of the spreading droplets are obtained, including octagons, squares, hexagons and cricles. Dynamic considerations provide a "shape" diagram and suggest rules for control. It is then shown how these ideas can be used to explore (and control) splashing and to create polygonal hydraulic jumps. Second, the evaporation of volatile liquid drops is considered. Using experiments and theory it is shown how the sense of the internal circulation depends on the ratio of the liquid and substrate conductivities. The internal motions control the deposition patterns and so may impact various printing processes. These ideas are then applied to colloid deposition porous media.
Syndicate content