Colloquia
|
Fri, 09/05/2008 16:30 |
Hans G. Othmer (University of Minnesota) |
Colloquia |
L2 |
| New techniques in cell and molecular biology have produced huge advances in our understanding of signal transduction and cellular response in many systems, and this has led to better cell-level models for problems ranging from biofilm formation to embryonic development. However, many problems involve very large numbers of cells, and detailed cell-based descriptions are computationally prohibitive at present. Thus rational techniques for incorporating cell-level knowledge into macroscopic equations are needed for these problems. In this talk we discuss several examples that arise in the context of cell motility and pattern formation. We will discuss systems in which the micro-to-macro transition can be made more or less completely, and also describe other systems that will require new insights and techniques. | |||
|
Fri, 06/06/2008 16:30 |
Prof. Michael Harris (Université Paris VII) |
Colloquia |
L2 |
| Let E be an elliptic curve defined by a cubic equation with rational coefficients. The Sato-Tate Conjecture is a statistical assertion about the variation of the number of points of E over finite fields. I review some of the main steps in my proof of this conjecture with Clozel, Shepherd-Barron, and Taylor, in the case when E has non-integral j-invariant. Emphasis will be placed on the steps involving moduli spaces of certain Calabi-Yau hypersurfaces with level structure.If one admits a version of the stable trace formula that should soon be available, the same techniques imply that, when E and E' are two elliptic curves that are not isogenous, then the numbers of their points over finite fields are statistically independent. For reasons that have everything to do with the current limits to our understanding of the Langlands program, the analogous conjectures for three or more non-isogenous elliptic curves are entirely out of reach. | |||
