Analytic Topology in Mathematics and Computer Science
|
Wed, 04/05/2011 16:00 |
Dr Secil Tokgoz (Turkey) |
Analytic Topology in Mathematics and Computer Science |
L3 |
A topological space is submaximal if is the maximal element of . Submaximality was first defined and characterized by Bourbaki. Since then, some mathematicians presented several characterizations of submaximal spaces.
In this paper, we will attempt to develop the concept of submaximality and offer some new results. Furthermore, some results concerning -scattered space will be obtained. |
|||
|
Wed, 01/06/2011 16:00 |
Olaf Klinke (University of Birmingham) |
Analytic Topology in Mathematics and Computer Science |
L3 |
It is known for long that the set of possible compactifications of
a topological space (up to homeomorphism) is in order-preserving
bijection to "strong inclusion" relations on the lattice of open
sets. Since these relations do not refer to points explicitly, this
bijection has been generalised to point-free topology (a.k.a.
locales). The strong inclusion relations involved are typically
"witnessed" relations. For example, the Stone-Cech compactification
has a strong inclusion witnessed by real-valued functions.
This makes it natural to think of compactification in terms of
d-frames, a category invented by Jung and Moshier for bitopological
Stone duality. Here, a witnessed strong inclusion is inherent to
every object and plays a central role.
We present natural analogues of the topological concepts regularity,
normality, complete regularity and compactness in d-frames.
Compactification is then a coreflection into the category of d-frames
dually equivalent to compact Hausdorff spaces. The category of
d-frames has a few surprising features. Among them are:
|
|||
|
Wed, 15/06/2011 16:00 |
Dr Henk Bruin (University of Surrey) |
Analytic Topology in Mathematics and Computer Science |
L3 |

is submaximal if
is the maximal element of
. Submaximality was first defined and characterized by Bourbaki. Since then, some mathematicians presented several characterizations of submaximal spaces.
In this paper, we will attempt to develop the concept of submaximality and offer some new results. Furthermore, some results concerning
-scattered space will be obtained.