Industrial and Interdisciplinary Workshops

Fri, 27/04/2012
10:00
Industrial and Interdisciplinary Workshops Add to calendar DH 3rd floor SR
Fri, 04/05/2012
10:00
Gary Barnes (Arkex) Industrial and Interdisciplinary Workshops Add to calendar DH 1st floor SR

ARKeX is a geophysical exploration company that conducts airborne gravity gradiometer surveys for the oil industry. By measuring the variations in the gravity field it is possible to infer valuable information about the sub-surface geology and help find prospective areas.

A new type of gravity gradiometer instrument is being developed to have higher resolution than the current technology. The basic operating principles are fairly simple - essentially measuring the relative displacement of two proof masses in response to a change in the gravity field. The challenge is to be able to see typical signals from geological features in the presence of large amounts of motional noise due to the aircraft. Fortunately, by making a gradient measurement, a lot of this noise is cancelled by the instrument itself. However, due to engineering tolerances, the instrument is not perfect and residual interference remains in the measurement.

Accelerometers and gyroscopes record the motional disturbances and can be used to mathematically model how the noise appears in the instrument and remove it during a software processing stage. To achieve this, we have employed methods taken from the field of system identification to produce models having typically 12 inputs and a single output. Generally, the models contain linear transfer functions that are optimised during a training stage where controlled accelerations are applied to the instrument in the absence of any anomalous gravity signal. After training, the models can be used to predict and remove the noise from data sets that contain signals of interest.

High levels of accuracy are required in the noise correction schemes to achieve the levels of data quality required for airborne exploration. We are therefore investigating ways to improve on our existing methods, or find alternative techniques. In particular, we believe non-linear and non-stationary models show benefits for this situation.

Fri, 11/05/2012
09:30
chair: Jon Chapman Industrial and Interdisciplinary Workshops Add to calendar DH 3rd floor SR
Fri, 25/05/2012
11:00
David Howey (Department of Engineering Science, University of Oxford) Industrial and Interdisciplinary Workshops Add to calendar DH 1st floor SR

Please note the unusual start-time.

In order to run accurate electrochemical models of batteries (and other devices) it is necessary to know a priori the values of many geometric, electrical and electrochemical parameters (10-100 parameters) e.g. diffusion coefficients, electrode thicknesses etc. However a basic difficulty is that the only external measurements that can be made on cells without deconstructing and destroying them are surface temperature plus electrical measurements (voltage, current, impedance) at the terminals. An interesting research challenge therefore is the accurate, robust estimation of physically realistic model parameters based only on external measurements of complete cells. System identification techniques (from control engineering) including ‘electrochemical impedance spectroscopy’ (EIS) may be applied here – i.e. small signal frequency response measurement. However It is not clear exactly why and how impedance correlates to SOC/ SOH and temperature for each battery chemistry due to the complex interaction between impedance, degradation and temperature.

I will give a brief overview of some of the recent work in this area and try to explain some of the challenges in the hope that this will lead to a fruitful discussion about whether this problem can be solved or not and how best to tackle it.

Fri, 01/06/2012
10:00
Andy Stove (Thales UK) Industrial and Interdisciplinary Workshops Add to calendar DH 1st floor SR

The issue of resource management arises with any sensor which is capable either of sensing only a part of its total field of view at any one time, or which is capable of having a number of operating modes, or both.

A very simple example is a camera with a telephoto lens.  The photographer has to decide what he is going to photograph, and whether to zoom in to get high resolution on a part of the scene, or zoom out to see more of the scene.  Very similar issues apply, of course, to electro-optical sensors (visible light or infra-red 'TV' cameras) and to radars.

The subject has, perhaps, been most extensively studied in relation to multi mode/multi function radars, where approaches such as neural networks, genetic algorithms and auction mechanisms have been proposed as well as more deterministic mangement schemes, but the methods which have actually been implemented have been much more primitive.

The use of multiple, disparate, sensors on multiple mobile, especially airborne, platforms adds further degrees of freedom to the problem - an extension is of growing interest.

The presentation will briefly review the problem for both the single-sensor and the multi-platform cases, and some of the approaches which have been proposed, and will highlight the remaining current problems.

Syndicate content