Recent D.Phil. and M.Sc. Theses

D.Phil. Theses

  • O. Cominetti Allende (2012) DifFUZZY: A novel clustering algorithm for systems biology (co-supervisor).
  • A. Smith (2012) Vertex model approaches to epithelial tissues in developmental systems.
  • T. Woolley (2012) Spatiotemporal behaviour of stochastic and continuum models for biological signalling on stationary and growing domains.
  • C.A. Yates (2011) Comparing stochastic discrete and deterministic continuum models of cell migration.
  • J.W. Schofield (2010) Aspects of modelling solid tumours.
  • C. E. Jupp (2010). Mathematical modelling of the formation of feather germs in chicks.
  • A. G. Fletcher (2010). Aspects of tumour modelling from the subcellular to the tissue scale.
  • S. Galsworthy (2009). Modelling the regional dynamics of plants.
  • N. K. Martin (2009). Mathematical models of tumour acidity: buffer therapy and stromal effects.
  • P. J. Murray (2008). From discrete to continuum models of tumour growth.
  • M. D. Johnston (2008). Mathematical modelling of cell population dynamics in the colonic crypt with application to colorectal cancer.
  • D. V. Nicolau (2008). Spatial modelling of chemotaxis and its evolution.
  • P. K. Kooner (2006). Mathematical modelling of tumour invasion: from biochemical networks to tissue dynamics.
  • K. Smallbone (2006). The role of acidity in tumour development (eprints).
  • D. Iber (2006). From single cells to multicellular organisms - a quantitative analysis.
  • R. E. Baker (2005). Periodic pattern formation in developmental biology: a study of the mechanisms involved in somite formation (eprints).
  • J. Panovska (2005). Mathematical modelling of tumour growth and application to therapy.
  • C. J. Bampfylde (2004). Mathematical modelling of rain forest regeneration dynamics: a case study in Sabah, Malaysia.
  • S. Schnell (2002). On the quasi-steady state approximation: enzyme-substrate reactions as a case study.
  • D. McInerney (2001). Spatio-temporal patterning in biological systems: Numerical techniques and mathematical modelling.
  • A. Madzvamuse (2000). A numerical approach to the study of spatial pattern formation.
  • E. J. Crampin (2000). Reaction and diffusion on growing domains.
  • B. Marchant (1999). Modelling cell invasion.
  • K. Page (1999). Mathematical models in embryology: the selection, regulation and speed of formation of patterns.
  • K. J. Painter (1997). Chemotaxis as a mechanism for morphogenesis.
  • J. R. Collier (1997). Spatial and propagating patterns in embryology.
  • T. Höfer (1996). Modelling Dictyostelium aggregation.
  • L. Olsen (1996). Mathematical modelling of wound contraction, fibroplasia and angiogenesis in dermal wound healing.
  • P. D. Dale (1995). Time heals all wounds? Mathematical models of epithelial and dermal wound healing.
  • D. L. Benson (1994). Reaction-diffusion models with spatially inhomogeneous diffusion coefficients.
  • F. Sánchez Garduño (1993). Travelling waves in one-dimensional degenerate nonlinear reaction-diffusion equations.
  • G. A. Ngwa (1993). The analysis of spatial and spatio-temporal patterns in models for morphogenesis.
  • G. C. Cruywagen (1992). Tissue interaction and spatial pattern formation.
  • M. A. Burke (1992). Suicide substrates: An analysis of the enzyme reaction and reaction-diffusion equations.
  • J. A. Sherratt (1991). Mathematical models of wound healing.

M.Sc. Theses

  • D. Tan (2010). Mathematical modelling of adhesion-mediated somitogenesis (M.Res.).
  • J. Walker (2008). A reaction-diffusion model for pattern formation on a growing domain.
  • C. A. Yates (2007). On the dynamics and evolution of self-propelled particle models (eprints).
  • A. Twomey (2007). On the stochastic modelling of reaction-diffusion processes (eprints).
  • K. Minoukadeh (2006). Mathematical model for antibody affinity maturation in an immune response.
  • V. Hawkins (2006). Asymptotics of a single cilium.
  • A. Schepf (2005). Phosphorus nutrition of mycorrhizal plants. A mathematical model (eprints).
  • G. Curtiss (2005). Modelling gene expressions time delays.
  • W. Del Strother (2005). Aspects of modelling chronotherapy.
  • Z. Tayler (2005). Modelling synovial joints and the progression of rheumatiod arthritis.
  • T. Maharaj (2004). Transmission dynamics of HIV.
  • B. Rapoport (2004). Geometric structures for encoding neural information (M.Res.).
  • J. A. Garcia Lazaro (2003). Towards a mathematical model of the metabolic regulation of the pancreatic Beta-cell K_ATP channel (M.Res.), Department of Physiology.
  • T. E. Turner (2003). Stochastic and deterministic approaches to modelling in vivo biochemical kinetics (M.Res.).
  • L. Southworth (2003). HIV transmission model: Targeted vaccination of commerical sex workers assuming heterogeneity of infectiousness.
  • N. Ashbee (2003). Coating strategies for virus particles in cancer gene therapy.
  • A. Fletcher (2003). Modelling transport processes in spinal discs.
  • J. Mansuri (2002). The modelling of tumour growth using reaction-diffusion equations.
  • D. Iber (2001). Affinity maturation in the immune system (M.Res.) (eprints).
  • R. Hall (2000). Modelling longitudinal bone growth plate dynamics.
  • C. J. Bampfylde (1999). Modelling rainforests (eprints).
  • T. Roose (1995). Viral infection in moths.
  • J. Parker (1994). The use of reaction diffusion systems to simulate morphogenesis.
  • A. B. Perumpanani (1993). Phase differences in morphogenesis (transfer dissertation).
  • T. Höfer (1993). Resolving the chemotactic wave paradox: A mathematical model for chemotaxis of Dictyostelium amoebae (Diplomarbeit, Humboldt Universität zu Berlin).
  • P. D. Dale (1992). Mathematical modelling of corneal epithelial wound healing.