Computational Mathematics and Applications Seminar

Previous seminars

Internal seminars (Tuesdays) for current term

Upcoming seminars:

23 November 2017
14:00
Professor Benedikt Wirth
Abstract

Spline curves represent a simple and efficient tool for data interpolation in Euclidean space. During the past decades, however, more and more applications have emerged that require interpolation in (often high-dimensional) nonlinear spaces such as Riemannian manifolds. An example is the generation of motion sequences in computer graphics, where the animated figure represents a curve in a Riemannian space of shapes. Two particularly useful spline interpolation methods derive from a variational principle: linear splines minimize the average squared velocity and cubic splines minimize the average squared acceleration among all interpolating curves. Those variational principles and their discrete analogues can be used to define continuous and discretized spline curves on (possibly infinite-dimensional) Riemannian manifolds. However, it turns out that well-posedness of cubic splines is much more intricate on nonlinear and high-dimensional spaces and requires quite strong conditions on the underlying manifold. We will analyse and discuss linear and cubic splines as well as their discrete counterparts on Riemannian manifolds and show a few applications.

  • Computational Mathematics and Applications Seminar

If no seminars are displayed this means no further seminars will be held during the current term. Please check again for our new seminar programme nearer the start of next term.