Date
Thu, 24 Jan 2013
Time
14:00 - 15:00
Location
Gibson Grd floor SR
Speaker
Dr David May
Organisation
ETH Zurich

Over million year time scales, the evolution and deformation of rocks on Earth can be described by the equations governing the motion of a very viscous, incompressible fluid. In this regime, the rocks within the crust and mantle lithosphere exhibit both brittle and ductile behaviour. Collectively, these rheologies result in an effective viscosity which is non-linear and may exhibit extremely large variations in space. In the context of geodynamics applications, we are interested in studying large deformation processes both prior and post to the onset of material failure.

\\

\\

Here I introduce a hybrid finite element (FE) - Lagrangian marker discretisation which has been specifically designed to enable the numerical simulation of geodynamic processes. In this approach, a mixed FE formulation is used to discretise the incompressible Stokes equations, whilst the markers are used to discretise the material lithology.

\\

\\

First I will show the a priori error estimates associated with this hybrid discretisation and demonstrate the convergence characteristics via several numerical examples. Then I will discuss several multi-level preconditioning strategies for the saddle point problem which are robust with respect to both large variations in viscosity and the underlying topological structure of the viscosity field.

\\

Finally, I will describe an extension of the multi-level preconditioning strategy that enables high-resolution, three-dimensional simulations to be performed with a small memory footprint and which is performant on multi-core, parallel architectures.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.