Seminar series
Date
Thu, 17 Jan 2013
12:00
Location
Gibson 1st Floor SR
Speaker
Parth Soneji
Organisation
OxPDE

We first provide a brief overview of some of the key properties of the space $\textrm{BV}(\Omega;\mathbb{R}^{N})$ of functions of Bounded Variation, and the motivation for its use in the Calculus of Variations. Now consider the variational integral

\[

F(u;\Omega):=\int_{\Omega}f(Du(x))\,\textrm{d} x\,\textrm{,}

\]

where $\Omega\subset\mathbb{R}^{n}$ is open and bounded, and $f\colon\mathbb{R}^{N\times n}\rightarrow\mathbb{R}$ is a continuous function satisfying the growth condition $0\leq f(\xi)\leq L(1+|\xi|^{r})$ for some exponent $r$. When $u\in\textrm{BV}(\Omega;\mathbb{R}^{N})$, we extend the definition of $F(u;\Omega)$ by introducing the functional

\[

\mathscr{F}(u,\Omega):= \inf_{(u_{j})}\bigg\{ \liminf_{j\rightarrow\infty}\int_{\Omega}f(Du_{j})\,\textrm{d} x\, \left|

\!\!\begin{array}{r}

(u_{j})\subset W_{\textrm{loc}}^{1,r}(\Omega, \mathbb{R}^{N}) \\

u_{j} \stackrel{\ast}{\rightharpoonup} u\,\,\textrm{in }\textrm{BV}(\Omega, \mathbb{R}^{N})

\end{array} \right. \bigg\} \,\textrm{.}

\]

\noindent For $r\in [1,\frac{n}{n-1})$, we prove that $\mathscr{F}$ satisfies the lower bound

\[

\mathscr{F}(u,\Omega) \geq \int_{\Omega} f(\nabla u (x))\,\textrm{d} x + \int_{\Omega}f_{\infty} \bigg(\frac{D^{s}u}{|D^{s}u|}\bigg)\,|D^{s}u|\,\textrm{,}

\]

provided $f$ is quasiconvex, and the recession function $f_{\infty}$ ($:= \overline{\lim}_{t\rightarrow\infty}f(t\xi )/t$) is assumed to be finite in certain rank-one directions. This result is a natural extension of work by Ambrosio and Dal Maso, which deals with the case $r=1$; it involves combining work of Kristensen, Braides and Coscia with some new techniques, including a polyhedral approximation result and a blow-up argument that exploits fine properties of BV functions.

Please contact us with feedback and comments about this page. Last updated on 04 Apr 2022 14:57.