Date
Tue, 11 Jun 2013
Time
10:15 - 11:15
Location
OCCAM Common Room (RI2.28)
Speaker
Koichi Takahashi
Organisation
RIKEN

***** PLEASE NOTE THAT THIS WILL TAKE PLACE ON TUESDAY 11TH JUNE ****

Signal transduction pathways are sophisticated information processing machinery in the cell that is arguably taking advantage of highly non-idealistic natures of intracellular environments for its optimum operations. In this study, we focused on effects of intracellular macromolecular crowding on signal transduction pathways using single-particle simulations. We have previously shown that rebinding of kinases to substrates can remarkably increase processivity of dual-phosphorylation reactions and change both steady-state and transient responses of the reaction network. We found that molecular crowding drastically enhances the rebinding effect, and it shows nonlinear time dependency although kinetics at the macroscopic level still follows the conventional model in dilute media. We applied the rate law revised on the basis of these calculations to MEK-ERK system and compared it with experimental measurements.

***** PLEASE NOTE THAT THIS WILL TAKE PLACE ON TUESDAY 11TH JUNE ****

Please contact us with feedback and comments about this page. Last updated on 04 Apr 2022 14:57.