The method of layer potentials in $L^p$ and endpoint spaces for elliptic operators with $L^\infty$ coefficients

4 March 2014
Andrew Morris

We consider the layer potentials associated with operators $L=-\mathrm{div} A \nabla$ acting in the upper half-space $\mathbb{R}^{n+1}_+$, $n\geq 2$, where the coefficient matrix $A$ is complex, elliptic, bounded, measurable, and $t$-independent.  A ``Calder\'{o}n--Zygmund" theory is developed for the boundedness of the layer potentials under the assumption that solutions of the equation $Lu=0$ satisfy interior De Giorgi--Nash--Moser type estimates. In particular, we prove that $L^2$ estimates for the layer potentials imply sharp $L^p$ and endpoint space estimates. The method of layer potentials is then used to obtain solvability of boundary value problems. This is joint work with Steve Hofmann and Marius Mitrea.

  • Functional Analysis Seminar