The Springer Correspondence and Poisson homology

17 June 2014
17:00
Prof. Travis Schedler.
Abstract
The Springer Correspondence relates irreducible representations of the Weyl group of a semisimple complex Lie algebra to the geometry of the cone of nilpotent elements of the Lie algebra. The zeroth Poisson homology of a variety is the quotient of all functions by those spanned by Poisson brackets of functions. I will explain a conjecture with Proudfoot, based on a conjecture of Lusztig, that assigns a grading to the irreducible representations of the Weyl group via the Poisson homology of the nilpotent cone. This conjecture is a kind of symplectic duality between this nilpotent cone and that of the Langlands dual. An analogous statement for hypertoric varieties is a theorem, which relates a hypertoric variety with its Gale dual, and assigns a second grading to its de Rham cohomology, which turns out to coincide with a different grading of Denham using the combinatorial Laplacian.