Homological stability for configuration spaces on closed manifolds

20 April 2015
Martin Palmer

Unordered configuration spaces on (connected) manifolds are basic objects
that appear in connection with many different areas of topology. When the
manifold M is non-compact, a theorem of McDuff and Segal states that these
spaces satisfy a phenomenon known as homological stability: fixing q, the
homology groups H_q(C_k(M)) are eventually independent of k. Here, C_k(M)
denotes the space of k-point configurations and homology is taken with
coefficients in Z. However, this statement is in general false for closed
manifolds M, although some conditional results in this direction are known.

I will explain some recent joint work with Federico Cantero, in which we
extend all the previously known results in this situation. One key idea is
to introduce so-called "replication maps" between configuration spaces,
which in a sense replace the "stabilisation maps" that exist only in the
case of non-compact manifolds. One corollary of our results is to recover a
"homological periodicity" theorem of Nagpal -- taking homology with field
coefficients and fixing q, the sequence of homology groups H_q(C_k(M)) is
eventually periodic in k -- and we obtain a much simpler estimate for the
period. Another result is that homological stability holds with Z[1/2]
coefficients whenever M is odd-dimensional, and in fact we improve this to
stability with Z coefficients for 3- and 7-dimensional manifolds.