Geometric proof of theorems of Ax-Kochen and Ersov
|
Thu, 17/02/2011 16:00 |
Jan Denef (Leuven) |
Logic Seminar Number Theory Seminar |
|
|
We will sketch a new proof of the Theorem of Ax and Kochen that any projective hypersurface over the p-adic numbers has a p-adic rational point, if it is given by a homogeneous polynomial with more variables than the square of its degree d, assuming that p is large enough with respect to the degree d. Our proof is purely algebraic geometric and (unlike all previous ones) does not use methods from mathematical logic. It is based on a (small upgrade of a) theorem of Abramovich and Karu about weak toroidalization of morphisms. Our method also yields a new alternative approach to the model theory of henselian valued fields (including the Ax-Kochen-Ersov transfer principle and quantifier elimination). |
|||
