Extremal fields and tame fields

25 February 2016
Franz-Viktor Kuhlmann

In the year 2003 Yuri Ershov gave a talk at a conference in Teheran on
his notion of ``extremal valued fields''. He proved that algebraically
complete discretely valued fields are extremal. However, the proof
contained a mistake, and it turned out in 2009 through an observation by
Sergej Starchenko that Ershov's original definition leads to all
extremal fields being algebraically closed. In joint work with Salih
Durhan (formerly Azgin) and Florian Pop, we chose a more appropriate
definition and then characterized extremal valued fields in several
important cases.

We call a valued field (K,v) extremal if for all natural numbers n and
all polynomials f in K[X_1,...,X_n], the set of values {vf(a_1,...,a_n)
| a_1,...,a_n in the valuation ring} has a maximum (which is allowed to
be infinity, attained if f has a zero in the valuation ring). This is
such a natural property of valued fields that it is in fact surprising
that it has apparently not been studied much earlier. It is also an
important property because Ershov's original statement is true under the
revised definition, which implies that in particular all Laurent Series
Fields over finite fields are extremal. As it is a deep open problem
whether these fields have a decidable elementary theory and as we are
therefore looking for complete recursive axiomatizations, it is
important to know the elementary properties of them well. That these
fields are extremal could be an important ingredient in the
determination of their structure theory, which in turn is an essential
tool in the proof of model theoretic properties.

The notion of "tame valued field" and their model theoretic properties
play a crucial role in the characterization of extremal fields. A valued
field K with separable-algebraic closure K^sep is tame if it is
henselian and the ramification field of the extension K^sep|K coincides
with the algebraic closure. Open problems in the classification of
extremal fields have recently led to new insights about elementary
equivalence of tame fields in the unequal characteristic case. This led
to a follow-up paper. Major suggestions from the referee were worked out
jointly with Sylvy Anscombe and led to stunning insights about the role
of extremal fields as ``atoms'' from which all aleph_1-saturated valued
fields are pieced together.