Seminar series
Date
Thu, 09 Jun 2016
16:00
Location
L6
Speaker
Joni Teräväinen
Organisation
University of Turku

When considering $E_k$ numbers (products of exactly $k$ primes), it is natural to ask, how they are distributed in short intervals. One can show much stronger results when one restricts to almost all intervals. In this context,  we seek the smallest value of c such that the intervals $[x,x+(\log x)^c]$ contain an $E_k$ number almost always. Harman showed that $c=7+\varepsilon$ is admissible for $E_2$ numbers, and this was the best known result also for $E_k$ numbers with $k>2$.

We show that for $E_3$ numbers one can take $c=1+\varepsilon$, which is optimal up to $\varepsilon$. We also obtain the value $c=3.51$ for $E_2$ numbers. The proof uses pointwise, large values and mean value results for Dirichlet polynomials as well as sieve methods.

Please contact us with feedback and comments about this page. Last updated on 04 Apr 2022 14:57.