Date
Thu, 26 Oct 2017
Time
14:00 - 15:00
Location
L4
Speaker
Dr Pietro Belotti

Several optimization problems combine nonlinear constraints with the integrality of a subset of variables. For an important class of problems  called Mixed Integer Second-Order Cone Optimization (MISOCO), with applications in facility location, robust optimization, and finance, among others, these nonlinear constraints are second-order (or Lorentz) cones.

For such problems, as for many discrete optimization problems, it is crucial to understand the properties of the union of two disjoint sets of feasible solutions. To this end, we apply the disjunctive programming paradigm to MISOCO and present conditions under which the convex hull of two disjoint sets can be obtained by intersecting the feasible set with a specially constructed second-order cone. Computational results show that such cone has a positive impact on the solution of MISOCO problems.

Please contact us with feedback and comments about this page. Last updated on 04 Apr 2022 14:57.