Date
Tue, 10 Oct 2017
17:00
Location
C1
Speaker
Jonas Azzam
Organisation
Edinburgh

For reasonable domains $\Omega\subseteq\mathbb{R}^{d+
1}$, and given some boundary data $f\in C(\partial\Omega)$, we can solve the Dirichlet problem and find a harmonic function $u_{f}$ that agrees with $f$ on $\partial\Omega$. For $x_{0}\in \Omega$, the association $f\rightarrow u_{f}(x_{0})$. is a linear functional, so the Riesz Representation gives us a measure $\omega_{\Omega}^{x_{0}}$ on $\partial\Omega$ called the harmonic measure with pole at $x_{0}$. One can also think of the harmonic measure of a set $E\subseteq \partial\Omega$ as the probability that a Brownian motion of starting at $x_{0}$ will first hit the boundary in $E$. In this talk, we will survey some very recent results about the relationship between the measure theoretic behavior of harmonic measure and the geometry of the boundary of its domain. In particular, we will study how absolute continuity of harmonic measure with respect to $d$-dimensional Hausdorff measure implies rectifiability of the boundary and vice versa.
 

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.