Date
Tue, 06 Feb 2018
Time
14:30 - 15:00
Location
L5
Speaker
Patrick Farrell
Organisation
Oxford University


The question of what happens to the eigenvalues of a matrix after an additive perturbation has a long history, with notable contributions from Wilkinson, Sorensen, Golub, H\"ormander, Ipsen and Mehrmann, among many others. If the perturbed matrix $C \in \mathbb{C}^{n \times n}$ is given by $C = A + B$, these theorems typically consider the case where $A$ and/or $B$ are symmetric and $B$ has rank one. In this talk we will prove a theorem that bounds the number of distinct eigenvalues of $C$ in terms of the number of distinct eigenvalues of $A$, the diagonalisability of $A$, and the rank of $B$. This new theorem is more general in that it applies to arbitrary matrices $A$ perturbed by matrices of arbitrary rank $B$. We will also discuss various refinements of my bound recently developed by other authors.
 

Please contact us with feedback and comments about this page. Last updated on 04 Apr 2022 14:57.