Author
Adamer, M
Woolley, T
Harrington, H
Journal title
Journal of the Royal Society, Interface
DOI
10.1098/rsif.2017.0447
Issue
137
Volume
14
Last updated
2024-04-23T06:53:46.923+01:00
Abstract
Oscillations in dynamical systems are widely reported in multiple branches of applied mathematics. Critically, even a non-oscillatory deterministic system can produce cyclic trajectories when it is in a low copy number, stochastic regime. Common methods of finding parameter ranges for stochastically driven resonances, such as direct calculation, are cumbersome for any but the smallest networks. In this paper, we provide a systematic framework to efficiently determine the number of resonant modes and parameter ranges for stochastic oscillations relying on real root counting algorithms and graph theoretic methods. We argue that stochastic resonance is a network property by showing that resonant modes only depend on the squared Jacobian matrix J2, unlike deterministic oscillations which are determined by J By using graph theoretic tools, analysis of stochastic behaviour for larger interaction networks is simplified and stochastic dynamical systems with multiple resonant modes can be identified easily.
Symplectic ID
811268
Favourite
Off
Publication type
Journal Article
Publication date
Dec 2017
Please contact us with feedback and comments about this page. Created on 15 Dec 2017 - 05:44.