Date
Fri, 08 Mar 2019
Time
14:00 - 15:00
Location
C2
Speaker
Louis Couston
Organisation
British Antarctic Survey

Energy transfers from small-scale turbulence and waves to large-scale flows are ubiquituous in oceans, atmospheres, planetary cores and stars.

Therefore, turbulence and waves have a direct effect on the large-scale organization of geophysical and astrophysical fluids and can affect their long-term dynamics.

In this talk I will discuss recent direct numerical simulation (DNS) results of two upscale energy transfer mechanisms that emerge from the dynamics of a fluid that is self-organized in a turbulent layer next to a stably-stratified one. This self-organization in an adjacent "two-layer" turbulent-stratified system is ubiquituous in nature and is representative of e.g. Earth's troposphere-stratosphere system, the oceans' surface mixed layer-thermocline system, and stars' convective-radiative interiors. The first set of DNS results will demonstrate how turbulent motions can generate internal waves, which then force a slowly-reversing large-scale flow, akin to Earth's Quasi-Biennial Oscillation (QBO). The second set of DNS results will show how the stratified layer regulates the emergence of large-scale vortices (LSV) in the turbulent layer under rapid rotation in the regime known as geostrophic turbulence. I will demonstrate why it is important to resolve both the turbulence and the waves, as otherwise the natural variability of the QBO is lost and LSV cannot form. I will discuss future works and highlight how the results may guide the implementation of upscale energy transfers in global earth system models.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.