Date
Tue, 19 Feb 2019
Time
12:45 - 13:30
Location
C3
Speaker
Anel Nurtay

With growing population of humans being clustered in large cities and connected by fast routes more suitable environments for epidemics are being created. Topped by rapid mutation rate of viral and bacterial strains, epidemiological studies stay a relevant topic at all times. From the beginning of 2019, the World Health Organization publishes at least five disease outbreak news including Ebola virus disease, dengue fever and drug resistant gonococcal infection, the latter is registered in the United Kingdom.

To control the outbreaks it is necessary to gain information on mechanisms of appearance and evolution of pathogens. Close to all disease-causing virus and bacteria undergo a specialization towards a human host from the closest livestock or wild fauna of a shared habitat. Every strain (or subtype) of a pathogen has a set of characteristics (e.g. infection rate and burst size) responsible for its success in a new environment, a host cell in case of a virus, and with the right amount of skepticism that set can be framed as fitness of the pathogen. In our model, we consider a population of a mutating strain of a virus. The strain specialized towards a new host usually remains in the environment and does not switch until conditions get volatile. Two subtypes, wild and mutant, of the virus share a host. This talk will illustrate findings on an explicitly independent cycling coexistence of the two subtypes of the parasite population. A rare transcritical bifurcation of limit cycles is discussed. Moreover, we will find conditions when one of the strains can outnumber and eventually eliminate the other strain focusing on an infection rate as fitness of strains.

Please contact us with feedback and comments about this page. Last updated on 04 Apr 2022 15:24.