Date
Fri, 25 Oct 2019
Time
14:00 - 15:00
Location
L6
Speaker
Tom Eaves
Organisation
University of British Columbia

Of the canonical stratified shear flow instabilities (Kelvin–Helmholtz, Holmboe-wave and Taylor–Caulfield), the Taylor–Caulfield instability (TCI) has received relatively little attention, and forms the focus of the presentation. A diagnostic of the linear instability dynamics is developed that exploits the net pseudomomentum to distinguish TCI from the other two instabilities for any given flow profile. Next, the nonlinear dynamics of TCI is shown across its range of unstable horizontal wavenumbers and bulk Richardson numbers. At small bulk Richardson numbers, a cascade of billow structures of sequentially smaller size may form. For large bulk Richardson numbers, the primary nonlinear travelling waves formed by the linear instability break down via a small-scale, Kelvin– Helmholtz-like roll-up mechanism with an associated large amount of mixing. In all cases, secondary parasitic nonlinear Holmboe waves appear at late times for high Prandtl number. Finally, a nonlinear diagnostic is proposed to distinguish between the saturated states of the three canonical instabilities based on their distinctive density–streamfunction and generalised vorticity–streamfunction relations.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.