Date
Tue, 28 Jan 2020
Time
12:45 - 14:00
Location
C3
Speaker
Yusuf Al-Husaini
Organisation
Brookes University (Oxford)

Numerous mathematical models have been proposed for modelling cancerous tumour invasion (Gatenby and Gawlinski 1996), angiogenesis (Owen et al 2008), growth kinetics (Wang et al 2009), response to irradiation (Gao et al 2013) and metastasis (Qiam and Akcay 2018). In this study, we attempt to model the qualitative behavior of growth, invasion, angiogenesis and fragmentation of tumours at the tissue level in an explicitly spatial and continuous manner in two dimensions. We simulate the effectiveness of radiation therapy on a growing tumour in comparison with immunotherapy and propose a novel framework based on vector fields for modelling the impact of interstitial flow on tumour morphology. The results of this model demonstrate the effectiveness of employing a system of partial differential equations along with vector fields for simulating tumour fragmentation and that immunotherapy, when applicable, is substantially more effective than radiation therapy.

Please contact us with feedback and comments about this page. Last updated on 04 Apr 2022 15:24.