Date
Thu, 17 Jan 2008
12:00
Location
DH 1st floor SR
Speaker
Michael Monoyios

The setting is a lognormal basis risk model. We study the optimal hedging of a claim on a non-traded asset using a correlated traded asset in a partial information framework, in which trading strategies are required to be adapted to the filtration generated by the asset prices. Assuming continuous observations, we take the assets' volatilites and the correlation as known, but the drift parameters are not known with certainty.

We assume the drifts are random variables with a Gaussian prior distribution, derived from data prior to the hedging timeframe. This distribution is updated via a Kalman-Bucy filter. The result is a basis risk model with random drift parameters.

Using exponsntial utility, the optimal hedging problem is attacked via the dual to the primal problem, leading to a representation for the hedging strategy in terms of derivatives of the indifference price. This representation contains additional terms reflecting uncertainty in the assets' drifts, compared with the classical full information model.

An analytic approximation for the indifference price and hedge is developed, for small positions in the claim, using elementary ideas of Malliavin calculus. This is used to simulate the hedging of the claim over many histories, and the terminal hedging error distribution is computed to determine if learning can counteract the effect of drift parameter uncertainty.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.