Date
Thu, 28 Feb 2008
Time
10:00 - 11:00
Location
Gibson 1st Floor SR
Speaker
Patrizo Neff
Organisation
University of Essen & T.U. Darmstadt

We are concerned with the derivation of the $\Gamma$-limit to a three-dimensional geometrically exact

Cosserat model as the relative thickness $h>0$ of a flat domain tends to zero. The Cosserat bulk model involves

already exact rotations as a second independent field and this model is meant to describe defective elastic crystals liable to fracture under shear.

It is shown that the $\Gamma$-limit based on a natural scaling assumption

consists of a membrane like energy contribution and a homogenized transverse shear energy both scaling with $h$,

augmented by an additional curvature stiffness due to the underlying Cosserat bulk formulation, also scaling with $h$.

No specific bending term appears in the dimensional homogenization process. The formulation

exhibits an internal length scale $L_c$ which survives the homogenization process.

%

A major technical difficulty, which we encounter in applying the $\Gamma$-convergence arguments,

is to establish equi-coercivity of the sequence of

functionals as the relative thickness $h$ tends to zero. Usually, equi-coercivity follows from a local coerciveness assumption.

While the three-dimensional problem is well-posed for the Cosserat couple modulus $\mu_c\ge 0$, equi-coercivity forces us

to assume a strictly positive Cosserat couple modulus $\mu_c>0$. The $\Gamma$-limit model determines the

midsurface deformation $m\in H^{1,2}(\omega,\R^3)$. For the case of zero Cosserat couple modulus $\mu_c=0$

we obtain an estimate of the $\Gamma-\liminf$ and $\Gamma-\limsup$, without equi-coercivity which is then strenghtened to a $\Gamma$-convergence result for zero Cosserat couple modulus. The classical linear

Reissner-Mindlin model is "almost" the linearization of the $\Gamma$-limit for $\mu_c=0$

apart from a stabilizing shear energy term.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.