Date
Mon, 21 Apr 2008
17:00
Location
L3
Speaker
V.P. Smyshlyaev
Organisation
University of Bath
Multi-well relaxation problem emerges e.g. in characterising effective properties of composites and in phase transformations. This is a nonlinear problem and one approach uses its reformulation in Fourier space, known in the theory of composites as Hashin-Shtrikman approach, adapted to nonlinear composites by Talbot and Willis. Characterisation of admissible mixtures, subjected to appropriate differential constraints, leads to a quasiconvexification problem. The latter is equivalently reformulated in the Fourier space as minimisation with respect to (extremal points of) H-measures of characteristic functions (Kohn), which in a sense separates the microgeometry of mixing from the differential constraints. For three-phase mixtures in 3D we obtain a full characterisation of certain extremal H-measures. This employs Muller's Haar wavelet expansion estimates in terms of Riesz transform to establish via the tools of harmonic analysis weak lower semicontinuity of certain functionals with rank-2 convex integrands. As a by-product, this allows to fully solve the problem of characterisation of quasiconvex hulls for three arbitrary divergence-free wells. We discuss the applicability of the results to problems with other kinematic constraints, and other generalisations. Joint work with Mariapia Palombaro, Leipzig.
Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.