Date
Mon, 24 Nov 2008
14:15
Location
Oxford-Man Institute
Speaker
Dr. Anke Wiese
Organisation
Heriot-Watt University

We present numerical schemes for nonlinear stochastic differential equations whose solution evolves on a smooth finite dimensional manifold. Given a Lie group action that generates transport along the manifold, we pull back the stochastic flow on the manifold to the Lie group via the action and subsequently to the corresponding Lie algebra.

We construct an approximation to the stochastic flow in the Lie algebra via closed operations and then push back to the manifold, thus ensuring our approximation lies in the manifold. We call such schemes stochastic Munthe-Kaas methods after their deterministic counterparts. We also present stochastic Lie group integration schemes based on Castell--Gaines methods. They become stochastic Lie group integrator schemes if we use Munthe-Kaas methods as the underlying ordinary differential integrator. Lastly, we demonstrate our methods by presenting some numerical examples

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.