Date
Tue, 09 Nov 2010
Time
14:30 - 15:30
Location
L3
Speaker
David Ellis
Organisation
Cambridge

A family of graphs F on a fixed set of n vertices is said to be triangle-intersecting if for any two graphs G,H in F, the intersection of G and H contains a triangle. Simonovits and Sos conjectured that such a family has size at most (1/8)2^{\binom{n}{2}}, and that equality holds only if F
consists of all graphs containing some fixed triangle. Recently, the author, Yuval Filmus and Ehud Friedgut proved a strengthening of this conjecture, namely that if F is an odd-cycle-intersecting family of graphs, then |F| \leq (1/8) 2^{\binom{n}{2}}. Equality holds only if F consists of all graphs containing some fixed triangle. A stability result also holds: an odd-cycle-intersecting family with size close to the maximum must be close to a family of the above form. We will outline proofs of these results, which use Fourier analysis, together with an analysis of the properties of random cuts in graphs, and some results in the theory of Boolean functions. We will then discuss some related open questions.

All will be based on joint work with Yuval Filmus (University of Toronto) and Ehud Friedgut (Hebrew University of Jerusalem).

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.