Date
Thu, 31 May 2007
Time
14:00 - 15:00
Location
Rutherford Appleton Laboratory, nr Didcot
Speaker
Dr Ekaterina Kostina
Organisation
University of Heidelberg

The development and quantitative validation of complex nonlinear differential equation models is a difficult task that requires the support by numerical methods for sensitivity analysis, parameter estimation, and the optimal design of experiments. The talk first presents particularly efficient "simultaneous" boundary value problems methods for parameter estimation in nonlinear differential algebraic equations, which are based on constrained Gauss-Newton-type methods and a time domain decomposition by multiple shooting. They include a numerical analysis of the well-posedness of the problem and an assessment of the error of the resulting parameter estimates. Based on these approaches, efficient optimal control methods for the determination of one, or several complementary, optimal experiments are developed, which maximize the information gain subject to constraints such as experimental costs and feasibility, the range of model validity, or further technical constraints.

Special emphasis is placed on issues of robustness, i.e. how to reduce the sensitivity of the problem solutions with respect to uncertainties - such as outliers in the measurements for parameter estimation, and in particular the dependence of optimum experimental designs on the largely unknown values of the model parameters. New numerical methods will be presented, and applications will be discussed that arise in satellite orbit determination, chemical reaction kinetics, enzyme kinetics and robotics. They indicate a wide scope of applicability of the methods, and an enormous potential for reducing the experimental effort and improving the statistical quality of the models.

(Based on joint work with H. G. Bock, S. Koerkel, and J. P. Schloeder.)

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.