Date
Fri, 18 Feb 2000
Time
14:00 - 15:00
Location
Rutherford Appleton Laboratory, nr Didcot
Speaker
Dr Kurt Lust
Organisation
University of Warwick

There is a growing interest in the study of periodic phenomena in

large-scale nonlinear dynamical systems. Often the high-dimensional

system has only low-dimensional dynamics, e.g., many reaction-diffusion

systems or Navier-Stokes flows at low Reynolds number. We present an

approach that exploits this property in order to compute branches of

periodic solutions of the large system of ordinary differential

equations (ODEs) obtained after a space discretisation of the PDE. We

call our approach the Newton-Picard method. Our method is based on the

recursive projection method (RPM) of Shroff and Keller but extends this

method in many different ways. Our technique tries to combine the

performance of straightforward time integration with the advantages of

solving a nonlinear boundary value problem using Newton's method and a

direct solver. Time integration works well for very stable limit

cycles. Solving a boundary value problem is expensive, but works also

for unstable limit cycles.

\\

\\

We will present some background material on RPM. Next we will explain

the basic features of the Newton-Picard method for single shooting. The

linearised system is solved by a combination of direct and iterative

techniques. First, we isolate the low-dimensional subspace of unstable

and weakly stable modes (using orthogonal subspace iteration) and

project the linearised system on this subspace and on its

(high-dimensional) orthogonal complement. In the high-dimensional

subspace we use iterative techniques such as Picard iteration or GMRES.

In the low-dimensional (but "hard") subspace, direct methods such as

Gaussian elimination or a least-squares are used. While computing the

projectors, we also obtain good estimates for the dominant,

stability-determining Floquet multipliers. We will present a framework

that allows us to monitor and steer the convergence behaviour of the

method.

\\

\\

RPM and the Newton-Picard technique have been developed for PDEs that

reduce to large systems of ODEs after space discretisation. In fact,

both methods can be applied to any large system of ODEs. We will

indicate how these methods can be applied to the discretisation of the

Navier-Stokes equations for incompressible flow (which reduce to an

index-2 system of differential-algebraic equations after space

discretisation when written in terms of velocity and pressure.)

\\

\\

The Newton-Picard method has already been extended to the computation

of bifurcation points on paths of periodic solutions and to multiple

shooting. Extension to certain collocation and finite difference

techniques is also possible.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.