Dr Sander Rhebergen

Dr Sander Rhebergen

Dr Sander Rhebergen

  • Post Doctoral Research Associate

Personal Web Page

eMail: Sander [dot] Rhebergen [-at-] maths [dot] ox [dot] ac [dot] uk
Contact Form

Phone Number(s):

Reception/Secretary: +44 1865 273525

Office: RI.0.28

Departmental Address:

Mathematical Institute
24-29 St Giles'
Oxford
OX1 3LB
England

Research Interests: 

Space- and space-time discontinuous Galerkin methods, hybridizable discontinuous Galerkin methods, nonconservative products, multigrid methods, deforming domains.

Prizes, Awards and Scholarships: 

(2010) Rubicon grant from the Netherlands Organization for Scientific Research.

Major/Recent Publications: 

S. Rhebergen, B. Cockburn and J.J.W. van der Vegt, A space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations,  J. Comput. Phys. Vol. 233 (2013), pp 339-358. Available at http://dx.doi.org/10.1016/j.jcp.2012.08.052

S. Rhebergen and B. Cockburn, Space-time hybridizable discontinuous Galerkin method for the advection-diffusion equation on moving and deforming meshes, In C.A. de Moura and C.S. Kubrusly (editors), Proc. "The Courant-Friedrichs-Lewy (CFL) condition, 80 years after its discovery", Birkhauser Science, 2013, pp 45-63. Available at http://dx.doi.org/10.1007/978-0-8176-8394-8_4

J.J.W. van der Vegt and S. Rhebergen, hp-multigrid as smoother algorithm for higher order discontinuous Galerkin discretizations of advection dominated flows. Part I. Multilevel analysis, J. Comput. Phys. Vol 231/22 (2012), pp 7537-7563. Available at http://dx.doi.org/10.1016/j.jcp.2012.05.038

J.J.W. van der Vegt and S. Rhebergen, hp-multigrid as smoother algorithm for higher order discontinuous Galerkin discretizations of advection dominated flows. Part II. Optimization of the Runge-Kutta smoother, J. Comput. Phys. Vol 231/22 (2012), pp 7564-7583. Available at http://dx.doi.org/10.1016/j.jcp.2012.05.037

S. Rhebergen and B. Cockburn, A space-time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains, J. Comput. Phys. Vol 231/11 (2012), pp 4185-4204. Available at http://dx.doi.org/10.1016/j.jcp.2012.02.011

J.J.W. van der Vegt and S. Rhebergen, Discrete Fourier Analysis of Multigrid Algorithms, ADIGMA report (2011). Available at http://eprints.eemcs.utwente.nl/20656

S. Rhebergen, J.J.W. van der Vegt and H. van der Ven, Multigrid optimization for space- time discontinuous Galerkin discretizations of advection dominated flows, In N. Kroll, H. Bieler, H. Deconinck, V. Couallier, H. Van der Ven and K. Sorensen, editors, ADIGMA – A European initiative on the development of adaptive higher-order variational methods for aerospace applications, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Volume 113, pp 257-269, Springer-Verlag, Berlin , 2010. Available at http://www.springerlink.com/content/0u2l7655278l3v25

S. Rhebergen, Discontinuous Galerkin finite element methods for (non)conservative partial differential equations, Ph.D. Thesis (2010). Available at http://dx.doi.org/10.3990/1.9789036529648

S. Rhebergen, O. Bokhove and J.J.W. van der Vegt, Discontinuous Galerkin finite element method for shallow two-phase flows, Comput. Methods Appl. Mech. Engrg., Vol 198 (2009), pp 819-830. Available at http://dx.doi.org/10.1016/j.cma.2008.10.019

P.A. Tassi, S. Rhebergen, C.A. Vionnet and O. Bokhove, A discontinuous Galerkin finite element model for river bed evolution under shallow flows, Comput. Methods Appl. Mech. Engrg., Vol 197 (2008), pp 2930-2947. Available at http://dx.doi.org/10.1016/j.cma.2008.01.023

S. Rhebergen, O. Bokhove and J.J.W. van der Vegt, Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations, J. Comput. Phys., Vol 227/3 (2008), pp 1887-1922. Available at http://dx.doi.org/10.1016/j.jcp.2007.10.007

Further Details: