Revision Questions

1. $\left(2^{3}\right)^{4}=2^{12} .\left(2^{4}\right)^{3}=2^{12} \cdot 2^{4} 2^{3}=2^{7} \cdot 2^{3} 2^{4}=2^{7}$.
2. This is a quadratic for $\frac{1}{x}$ with solutions $\frac{1}{x}=-1$ or $\frac{1}{x}=-3$. So $x=-1$ or $x=-\frac{1}{3}$. Alternatively, we could multiply both sides by x^{2} and solve the quadratic that we get.
3. This is $\log _{10} 12$.
4. The quadratic inside the brackets factorises, and this is $\log _{3}(x+2)+\log _{2}(x+1)$. Other answers are possible, such as $\log _{3}(2(x+2))+\log _{3}((x+1) / 2)$.
5 . The left-hand side is just 2 so we want $2=x^{3}$. So $x=\sqrt[3]{2}$.
5. The left-hand side is $1+\log _{x} 2$ so we want $\log _{x} 2=2$. So $x^{2}=2$ and $x=\sqrt{2}($ not $-\sqrt{2}$ because we're told that $x>0$).
6. Take $(x+5)$ to the power of each side to get $6 x+22=(x+5)^{2}$. Expand the square and rearrange for $x^{2}+4 x+3=0$. The solutions are $x=-1$ or $x=-3$. Check these solutions; $\log _{4}(16)=2$ and $\log _{2}(4)=2$.
7. $-\ln 1024=\ln \left(2^{10}\right)=10 \ln 2=10 a$.

- $\ln 40=\ln 8+\ln 5=3 a+b$.
- $\ln \sqrt{2 / 5}=\frac{1}{2} \ln 2 / 5=\frac{1}{2}(a-b)$.
- $\ln (1 / 10)=-\ln 10=-\ln 2-\ln 5=-a-b$.
- $\ln 1.024=\ln 1024+\ln 1 / 1000=10 a+3(-a-b)=7 a-3 b$.
- There are other solutions, partly because $b=a \times \log _{2} 5$.

9. $e^{x+y}+e^{y-x}-e^{x-y}-e^{-x-y}+e^{x+y}-e^{y-x}+e^{x-y}-e^{-x-y}$. That's $2 e^{x+y}-2 e^{-x-y}$. $e^{x+y}+e^{y-x}+e^{x-y}+e^{-x-y}+e^{x+y}-e^{y-x}-e^{x-y}+e^{-x-y}$. That's $2 e^{x+y}+2 e^{-x-y}$.
10. $2^{x}=3$ is what it means for x to be $\log _{2} 3$.

If $0.5^{x}=3$ then $2^{-x}=3$ so $x=-\log _{2} 3$. Alternatively, just write down $x=\log _{0.5} 3$.
If $4^{x}=3$ then $2^{2 x}=3$ so $x=\frac{1}{2} \log _{2} 3$. Alternatively, just write down $x=\log _{4} 3$.
11. $1^{x}=1$ is true for all real $x .1^{x}$ is never equal to 3 for real x.
12. $0^{b}=0$ for any real $b>0 . a^{0}$ is never 0 .
13. We have $\log _{10} x=10^{6}$, which is a million. So x is ten to the power of a million. That's got a million zeros at the end.
14. Multiply both sides by e^{x} and rearrange to get $e^{2 x}-4 e^{x}+1=0$. This is a quadratic for e^{x}. Solve it for $e^{x}=2 \pm \sqrt{3}$. So $x=\ln (2 \pm \sqrt{3})$.

Following the previous working, we can see that we'll get two roots for e^{x} if $c^{2}-4>0$. But we need these to be positive roots, so we need $c>2$. If $c=2$ there's a repeated root. If $c<2$ there are no roots.
15. Move both terms onto the left-hand side and use the fact that
$\left(N+\sqrt{N^{2}-1}\right)\left(N-\sqrt{N^{2}-1}\right)=N^{2}-\left(N^{2}-1\right)=1$; that's the difference of two squares. Remember that $\ln 1=0$.

As a result, our solutions above $x=\ln (2 \pm \sqrt{3})$ are actually $x= \pm \ln (2+\sqrt{3})$, revealing a lovely symmetry. But you could have spotted that from the equation, of course!
16. We have $\ln \left(x^{y}\right)=\ln \left(y^{x}\right)$ which we can simplify down to $y \ln x=x \ln y$. Now rearrange to get $\frac{\ln x}{x}=\frac{\ln y}{y}$. You might choose to put this fraction the other way up, or to square both sides or something, so your $f(x)$ might not be the same as mine. Here's a sketch of $y=\frac{\ln (x)}{x}$.

17. This is $\left(a^{\log _{a} b}\right)^{k}=b^{k}$.
18. We can use a similar bit of algebra to the previous question with $k=\log _{b} c$.

$$
a^{x}=a^{\log _{a} b \log _{b} c}=\left(a^{\log _{a} b}\right)^{\log _{b} c}=(b)^{\log _{b} c}=c .
$$

So $a^{x}=c$ and therefore $x=\log _{a} c$.
19. If we relabel the previous result, we can write $\log _{c} a \log _{a} b=\log _{c} b$. Now divide by $\log _{c} a$ to get

$$
\log _{a} b=\frac{\log _{c} b}{\log _{c} a}
$$

In particular, if we take c to be the number e, then we can write that fraction with \ln instead of $\log _{e}$. This is handy because it shows that we can always write logarithms like $\log _{a} x$ in terms of \ln. All other $\log _{a} x$ graphs are just simple transformations of the $\ln x$ graph.

MAT 2007 Q1I

If we make the substitution $x=\log _{10} a$ and $y=\log _{10} b$ then it's easier to see what's going on.

$$
4 x^{2}+y^{2}=1
$$

We want to make a large, which is the same as making x large (because $\log _{10} x$ is an increasing function).
But we have $x= \pm \frac{1}{2} \sqrt{1-y^{2}}$ from the above, which is clearly maximised when $y=0$ and $x=\frac{1}{2}$. Check that this is actually possible; we would need $\frac{1}{2}=\log _{10} a$ and $0=\log _{10} b$, so $a=\sqrt{10}$ and $b=1$. This is OK.

The answer is (c).

MAT 2008 Q1B

Let $x=\log _{10} \pi$. Note that $0<x<1$ because $1<\pi<10$. The four values are

$$
x, \quad \sqrt{2 x}, \quad x^{-3} \quad \frac{2}{x} .
$$

Now we want to compare these terms. We have $x<\sqrt{2 x}$ if $x^{2}<2 x$ which happens if $x<2$. Also $x<x^{-3}$ because $x<1$. Also $x<2 / x$ because $x<\sqrt{2}$.

The answer is (a).

MAT 2008 Q1E

Ignore small powers of x inside each pair of round brackets. We get something like

$$
\left\{\left[\left(2 x^{6}+\ldots\right)^{3}+\left(3 x^{8}+\ldots\right)^{4}\right]^{5}+\left[\left(3 x^{5}+\ldots\right)^{5}+\left(x^{7}+\ldots\right)^{4}\right]^{6}\right\}^{3}
$$

Now apply the powers on the round brackets and compare terms again

$$
\left\{\left[2^{3} x^{18}+3^{4} x^{32}+\ldots\right]^{5}+\left[3^{5} x^{25}+x^{28}+\ldots\right]^{6}\right\}^{3}
$$

Take the largest power inside each square bracket and apply the power on that bracket

$$
\left\{3^{20} x^{160}+x^{168}+\ldots\right\}^{3}
$$

Take the largest power inside the curly brackets and apply the power on that bracket

$$
x^{504}+\ldots
$$

The answer is (d).

MAT 2010 Q1E

First note that $\log _{4} 8=\frac{3}{2}$ because $4=2^{2}$ and $8=2^{3}$, so $4^{3 / 2}=8$.
Is $\log _{2} 3>\frac{3}{2}$? Only if $3>2^{3 / 2}$ so only if $9>8$. Yes!
Is $\log _{3} 2>\frac{3}{2} ?$ No, it's less than one.
Is $\log _{5} 10>\frac{3}{2}$? Only if $10>5^{3 / 2}$, so only if $100>125$. No!
So only $\log _{2} 3$ is larger than $\frac{3}{2}$.
The answer is (a).

MAT 2012 Q1C

Simplify $(\sqrt{3})^{3}=3 \sqrt{3}$.
Simplify $\log _{3}\left(9^{2}\right)=4$.
Simplify $\left(3 \sin 60^{\circ}\right)^{2}=(3 \sqrt{3} / 2)^{2}=\frac{27}{4}$.
Simplify $\log _{2}\left(\log _{2} 8^{5}\right)=\log _{2}\left(\log _{2} 2^{15}\right)=\log _{2}(15)$.
The next thing I notice is that $15<16$ so $\log _{2}(15)<4$. Aha, that means that it's less than $\log _{3}\left(9^{2}\right)$.
Then perhaps I could notice that $\frac{27}{4}>4$. So my remaining candidates for the smallest of the numbers are $3 \sqrt{3}$ and $\log _{2}(15)$. But $3 \sqrt{3}=\sqrt{27}>4$. So option (d) is the only one that's less than 4.

The answer is (d).

Extension

- We've seen above that for $0<\alpha<1$, the smallest is (a). For $\alpha>1$, it turns out that α^{-3} is the smallest.
- $(8!)^{9}=(8!)^{8} \times 8$! and $(9!)^{8}=(8!)^{8} \times 9^{8}$. Now 9^{8} is clearly larger than $8!$ (each is the product of eight things, and in the case of 9^{8}, each of those eight things is larger!). So $(9!)^{8}>(8!)^{9}$.

