Revision Questions

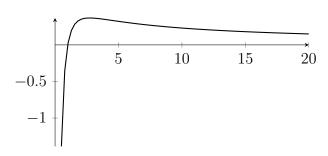
- 1. $(2^3)^4 = 2^{12}$. $(2^4)^3 = 2^{12}$. $2^4 2^3 = 2^7$. $2^3 2^4 = 2^7$.
- 2. This is a quadratic for $\frac{1}{x}$ with solutions $\frac{1}{x} = -1$ or $\frac{1}{x} = -3$. So x = -1 or $x = -\frac{1}{3}$. Alternatively, we could multiply both sides by x^2 and solve the quadratic that we get.
- 3. This is $\log_{10} 12$.
- 4. The quadratic inside the brackets factorises, and this is $\log_3(x+2) + \log_2(x+1)$. Other answers are possible, such as $\log_3(2(x+2)) + \log_3((x+1)/2)$.
- 5. The left-hand side is just 2 so we want $2 = x^3$. So $x = \sqrt[3]{2}$.
- 6. The left-hand side is $1 + \log_x 2$ so we want $\log_x 2 = 2$. So $x^2 = 2$ and $x = \sqrt{2}$ (not $-\sqrt{2}$ because we're told that x > 0).
- 7. Take (x + 5) to the power of each side to get $6x + 22 = (x + 5)^2$. Expand the square and rearrange for $x^2 + 4x + 3 = 0$. The solutions are x = -1 or x = -3. Check these solutions; $\log_4(16) = 2$ and $\log_2(4) = 2$.
- 8. $\ln 1024 = \ln (2^{10}) = 10 \ln 2 = 10a$.
 - $\ln 40 = \ln 8 + \ln 5 = 3a + b.$
 - $\ln \sqrt{2/5} = \frac{1}{2} \ln 2/5 = \frac{1}{2} (a b).$
 - $\ln(1/10) = -\ln 10 = -\ln 2 \ln 5 = -a b.$
 - $\ln 1.024 = \ln 1024 + \ln 1/1000 = 10a + 3(-a b) = 7a 3b.$
 - There are other solutions, partly because $b = a \times \log_2 5$.
- 9. $e^{x+y} + e^{y-x} e^{x-y} e^{-x-y} + e^{x+y} e^{y-x} + e^{x-y} e^{-x-y}$. That's $2e^{x+y} 2e^{-x-y}$. $e^{x+y} + e^{y-x} + e^{x-y} + e^{-x-y} + e^{x+y} - e^{y-x} - e^{x-y} + e^{-x-y}$. That's $2e^{x+y} + 2e^{-x-y}$.
- 10. $2^x = 3$ is what it means for x to be $\log_2 3$. If $0.5^x = 3$ then $2^{-x} = 3$ so $x = -\log_2 3$. Alternatively, just write down $x = \log_{0.5} 3$. If $4^x = 3$ then $2^{2x} = 3$ so $x = \frac{1}{2}\log_2 3$. Alternatively, just write down $x = \log_4 3$.
- 11. $1^x = 1$ is true for all real x. 1^x is never equal to 3 for real x.
- 12. $0^b = 0$ for any real b > 0. a^0 is never 0.
- 13. We have $\log_{10} x = 10^6$, which is a million. So x is ten to the power of a million. That's got a million zeros at the end.
- 14. Multiply both sides by e^x and rearrange to get $e^{2x} 4e^x + 1 = 0$. This is a quadratic for e^x . Solve it for $e^x = 2 \pm \sqrt{3}$. So $x = \ln(2 \pm \sqrt{3})$.

Following the previous working, we can see that we'll get two roots for e^x if $c^2 - 4 > 0$. But we need these to be positive roots, so we need c > 2. If c = 2 there's a repeated root. If c < 2 there are no roots.

15. Move both terms onto the left-hand side and use the fact that $(N + \sqrt{N^2 - 1})(N - \sqrt{N^2 - 1}) = N^2 - (N^2 - 1) = 1$; that's the difference of two squares. Remember that $\ln 1 = 0$.

As a result, our solutions above $x = \ln(2 \pm \sqrt{3})$ are actually $x = \pm \ln(2 + \sqrt{3})$, revealing a lovely symmetry. But you could have spotted that from the equation, of course!

16. We have $\ln(x^y) = \ln(y^x)$ which we can simplify down to $y \ln x = x \ln y$. Now rearrange to get $\frac{\ln x}{x} = \frac{\ln y}{y}$. You might choose to put this fraction the other way up, or to square both sides or something, so your f(x) might not be the same as mine. Here's a sketch of $y = \frac{\ln(x)}{x}$.



- 17. This is $(a^{\log_a b})^k = b^k$.
- 18. We can use a similar bit of algebra to the previous question with $k = \log_b c$.

$$a^{x} = a^{\log_{a} b \log_{b} c} = (a^{\log_{a} b})^{\log_{b} c} = (b)^{\log_{b} c} = c.$$

So $a^x = c$ and therefore $x = \log_a c$.

19. If we relabel the previous result, we can write $\log_c a \log_a b = \log_c b$. Now divide by $\log_c a$ to get

$$\log_a b = \frac{\log_c b}{\log_c a}$$

In particular, if we take c to be the number e, then we can write that fraction with $\ln x$ instead of \log_e . This is handy because it shows that we can always write logarithms like $\log_a x$ in terms of \ln . All other $\log_a x$ graphs are just simple transformations of the $\ln x$ graph.

MAT 2007 Q1I

If we make the substitution $x = \log_{10} a$ and $y = \log_{10} b$ then it's easier to see what's going on.

$$4x^2 + y^2 = 1$$

We want to make a large, which is the same as making x large (because $\log_{10} x$ is an increasing function).

But we have $x = \pm \frac{1}{2}\sqrt{1-y^2}$ from the above, which is clearly maximised when y = 0 and $x = \frac{1}{2}$. Check that this is actually possible; we would need $\frac{1}{2} = \log_{10} a$ and $0 = \log_{10} b$, so $a = \sqrt{10}$ and b = 1. This is OK.

The answer is (c).

MAT 2008 Q1B

Let $x = \log_{10} \pi$. Note that 0 < x < 1 because $1 < \pi < 10$. The four values are

$$x, \qquad \sqrt{2x}, \qquad x^{-3} \qquad \frac{2}{x}.$$

Now we want to compare these terms. We have $x < \sqrt{2x}$ if $x^2 < 2x$ which happens if x < 2. Also $x < x^{-3}$ because x < 1. Also x < 2/x because $x < \sqrt{2}$.

The answer is (a).

MAT 2008 Q1E

Ignore small powers of x inside each pair of round brackets. We get something like

$$\left\{ \left[\left(2x^6 + \dots\right)^3 + \left(3x^8 + \dots\right)^4 \right]^5 + \left[\left(3x^5 + \dots\right)^5 + \left(x^7 + \dots\right)^4 \right]^6 \right\}^3$$

Now apply the powers on the round brackets and compare terms again

$$\left\{ \left[2^{3}x^{18} + 3^{4}x^{32} + \dots\right]^{5} + \left[3^{5}x^{25} + x^{28} + \dots\right]^{6} \right\}^{3}$$

Take the largest power inside each square bracket and apply the power on that bracket

$$\left\{3^{20}x^{160} + x^{168} + \dots\right\}^3$$

Take the largest power inside the curly brackets and apply the power on that bracket

$$x^{504} + ...$$

The answer is (d).

Oxford Mathematics

For more see www.maths.ox.ac.uk/r/matlive

MAT 2010 Q1E

First note that $\log_4 8 = \frac{3}{2}$ because $4 = 2^2$ and $8 = 2^3$, so $4^{3/2} = 8$. Is $\log_2 3 > \frac{3}{2}$? Only if $3 > 2^{3/2}$ so only if 9 > 8. Yes! Is $\log_3 2 > \frac{3}{2}$? No, it's less than one. Is $\log_5 10 > \frac{3}{2}$? Only if $10 > 5^{3/2}$, so only if 100 > 125. No! So only $\log_2 3$ is larger than $\frac{3}{2}$. **The answer is (a).**

MAT 2012 Q1C

Simplify $(\sqrt{3})^3 = 3\sqrt{3}$.

Simplify $\log_3(9^2) = 4$.

Simplify $(3\sin 60^\circ)^2 = (3\sqrt{3}/2)^2 = \frac{27}{4}$.

Simplify $\log_2(\log_2 8^5) = \log_2(\log_2 2^{15}) = \log_2(15)$.

The next thing I notice is that 15 < 16 so $\log_2(15) < 4$. Aha, that means that it's less than $\log_3(9^2)$.

Then perhaps I could notice that $\frac{27}{4} > 4$. So my remaining candidates for the smallest of the numbers are $3\sqrt{3}$ and $\log_2(15)$. But $3\sqrt{3} = \sqrt{27} > 4$. So option (d) is the only one that's less than 4.

The answer is (d).

Extension

- We've seen above that for $0 < \alpha < 1$, the smallest is (a). For $\alpha > 1$, it turns out that α^{-3} is the smallest.
- (8!)⁹ = (8!)⁸ × 8! and (9!)⁸ = (8!)⁸ × 9⁸. Now 9⁸ is clearly larger than 8! (each is the product of eight things, and in the case of 9⁸, each of those eight things is larger!). So (9!)⁸ > (8!)⁹.