## Revision Questions

1. Something like

2. We add the components separately, so $\binom{3}{2}+\binom{-4}{1}=\binom{-1}{3}$. My diagram now looks like this.

3. You multiply a vector by a scalar by multiplying each component, so $3\binom{-4}{1}=\binom{-12}{3}$ and $2\binom{1}{-2}=\binom{2}{-4}$. Then add them together $\binom{-12}{3}+\binom{2}{-4}=\binom{-10}{-1}$.
My diagram now looks like this.

4. This line has gradient $(-1-5) /(3-1)=-3$ and goes through $(1,5)$ so it's $y-5=$ $-3(x-1)$ which can also be written as $y=8-3 x$.
5. This must be $y=2 x+c$ for some constant $c$, and the line goes through $(3,5)$ so $5=6+c$ and so the line is $y=2 x-1$.
6. I might try to show that all the sides are the same length, and that all the corners are right angles. First I need to draw a diagram to get the points in the right order.


Now I can check that the distances from $(1,3)$ to $(3,4)$, from $(3,4)$ to $(2,6)$, from $(2,6)$ to $(0,5)$, and from $(0,5)$ to $(1,3)$ are all $\sqrt{5}$.
To check the corners are right angles, I could check that the gradients of the lines for each side multiply to -1 . Those gradients are all either $\frac{1}{2}$ or -2 , so all the corners are right angles.
7. There are lots of examples that work! I decided to use the $x$-axis as one of my lines (that's $y=0$ ), and then use something like $y=\sqrt{3}-a x$ and $y=\sqrt{3}+b x$ for some $a$ and $b$; I've chosen those $y$-intercepts so that $(0, \sqrt{3})$ is a corner of the triangle.

I need those two lines to go through $( \pm 1,0)$. I can do that by choosing $a$ and $b$ carefully, and I end up with the three lines $y=0$ and $y=\sqrt{3}(1-x)$ and $y=\sqrt{3}(1+x)$.
8. $(x+1)^{2}+(y-2)^{2}=3^{2}$

The area is $\pi r^{2}$ and $r=3$ so the area is $9 \pi$.
The circle meets the $x$-axis where $(x+1)^{2}+(0-2)^{2}=3^{2}$. That's $x=-1 \pm \sqrt{5}$.
The circle meets the $y$-axis where $(0+1)^{2}+(y-2)^{2}=3^{2}$. That's $y=2 \pm \sqrt{8}$.
9. $x^{2}+9 x+y^{2}-3 y=\left(x+\frac{9}{2}\right)^{2}+\left(y-\frac{3}{2}\right)^{2}-\frac{81}{4}-\frac{9}{4}$. The equation of the circle is $\left(x+\frac{9}{2}\right)^{2}+\left(y-\frac{3}{2}\right)^{2}=10+\frac{90}{4}$. So the centre is $\left(-\frac{9}{2}, \frac{3}{2}\right)$ and the radius is $\sqrt{\frac{65}{2}}$.
10. Draw a diagram.


Since $120^{\circ}$ is one-third of $360^{\circ}$, the length of the arc is one-third of the length of the circumference $2 \pi r$ with $r=2$. So the length of the arc is $\frac{4}{3} \pi$. The area is one-third of $\pi r^{2}$, which works out to be $\frac{4}{3} \pi$.
11. Draw a diagram.


Find the points of intersection. Taking the difference between the two equations gives $x^{2}=(x-2)^{2}$, so $x=2-x$ or $x=x-2$, which only has $x=1$ as a solution. The $y$-coordinates are $\pm \sqrt{3}$, and the angle at the centre is $120^{\circ}$. Let's aim to find the area to the right of $x=1$ that's inside both circles. That's the area of the sector from the previous question, minus the area of a triangle. We can use $\frac{1}{2} a b \sin \theta$ to work out the area of the triangle, $\sqrt{3}$.
Then we'll need to double the area to get our final answer of $\frac{8}{3} \pi-2 \sqrt{3}$.
12. Draw a diagram.


We could write down equations for the distance of a general point $(x, y)$ to each of these points and set them equal to each other, but that's a lot of work.

Instead, note that the gradient of the line from $(0,0)$ to $(1, a)$ is $a$ and the gradient of the line from $(1, a)$ to $\left(0, a+a^{-1}\right)$ is $-a^{-1}$. These gradients multiply to -1 , so the lines are at right-angles.
The angle in a semi-circle is a right-angle, so the line from the first point to the third point is the diameter of the circle.
The centre is at the midpoint of the diameter, so it's at $\left(0, \frac{1}{2}\left(a+a^{-1}\right)\right)$.
13. The area $A(c)$ is zero if $c<-1$ and it's $\pi$ if $c>1$. In between, the area rises from 0 to $\pi$ in a nice symmetric manner; slow then fast then slow.


## MAT 2008 Q4

(i) Let's write down $(x-a)^{2}+(y-b)^{2}=r^{2}$ for the equation of the circle. The three points $(0,0)$ and $(p, 0)$ and $(0, q)$ all lie on the circle, which gives three equations;

$$
(0-a)^{2}+(0-b)^{2}=r^{2}, \quad(p-a)^{2}+(0-b)^{2}=r^{2}, \quad(0-a)^{2}+(q-b)^{2}=r^{2} .
$$

We can simplify these a bit, and multiply out some squares, and take the difference between pairs of equations, to get

$$
p^{2}-2 p a=0, \quad q^{2}-2 q b=0, \quad a^{2}+b^{2}=r^{2}
$$

Now $p \neq 0$ and $q \neq 0$ so $a=\frac{p}{2}$ and $b=\frac{q}{2}$, and $r=\sqrt{\frac{p^{2}+q^{2}}{4}}$.
If we substitute those numbers into the equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ and multiply out the squares, we get the equation in the question.
Along the way, we found the centre $(a, b)=\left(\frac{p}{2}, \frac{q}{2}\right)$ and we found the radius. The area of $C$ is $\pi \frac{p^{2}+q^{2}}{4}$.
(ii) We just found the area of the circle. The area of the triangle is $\frac{1}{2} p q$. If we write out the inequality in the question, we see that we're being asked to prove that

$$
\pi \frac{p^{2}+q^{2}}{2 p q} \geqslant \pi
$$

for all positive real numbers $p$ and $q$. This is true because $(p-q)^{2} \geqslant 0$, and that rearranges to the inequality above (we can divide by $p q$ because $p$ and $q$ are not zero). If I'm honest, I rearranged the equation first, factorised it as $(p-q)^{2}$, realised that was positive or zero, then presented all of that to you in the opposite order. Sometimes it's a good idea to work backwards as well as forwards... provided that your final argument makes sense, of course.
(iii) Now we're asked to solve

$$
\pi \frac{p^{2}+q^{2}}{2 p q}=2 \pi
$$

which rearranges to $p^{2}+q^{2}=4 p q$. This is one equation for two variables, so we can't really solve it for $p$ and $q$. But we just want expressions for the angles. From trigonometry, we know that $q / p$ is $\tan \angle O P Q$, and something similar is true for $\tan \angle O Q P$. That inspires me to divide the equation by $p^{2}$ and solve

$$
1+\left(\frac{q}{p}\right)^{2}=4\left(\frac{q}{p}\right)
$$

which is just a quadratic equation. The roots are $2 \pm \sqrt{3}$ so the angles are $\tan ^{-1}(2 \pm \sqrt{3})$.

## Extension

- If $\tan \theta=2-\sqrt{3}$ then

$$
\tan 2 \theta=\frac{4-2 \sqrt{3}}{1-(4-4 \sqrt{3}+3)}=\frac{4-2 \sqrt{3}}{4 \sqrt{3}-6}=\frac{1}{\sqrt{3}}
$$

so $2 \theta$ is $30^{\circ}$ (restricting to the range $0 \leqslant \theta \leqslant 180^{\circ}$ ). So $\theta$ must be $15^{\circ}$.
If $\tan \theta=2+\sqrt{3}$ then

$$
\tan 2 \theta=\frac{4+2 \sqrt{3}}{1-(4+4 \sqrt{3}+3)}=\frac{4+2 \sqrt{3}}{-4 \sqrt{3}-6}=-\frac{1}{\sqrt{3}}
$$

so $2 \theta$ is $150^{\circ}$ (restricting to the range $0 \leqslant \theta \leqslant 180^{\circ}$ ). So $\theta$ must be $75^{\circ}$.

- Differentiate to get $1-x^{-2}$ which is zero at $x= \pm 1$. The minimum value of the function occurs when $x=1$, and the value is 2 .
Alternatively, use the fact that $a^{2}+b^{2} \geqslant 2 a b$ with $a=x^{1 / 2}$ and $b=x^{-1 / 2}$. Then $x+x^{-1} \geqslant 2 x^{1 / 2} x^{-1 / 2}=2$.


## MAT 2010 Q4

(i) If I drop a perpendicular from $(1,2 h)$ to $(1,0)$ then I have a right-angled triangle with angle $\theta$, opposite a side of length $2 h$ and adjacent to a side of length $2 h$. So $\tan \theta=2 h$.
(ii) $(1,2 h)$ lies in $x^{2}+y^{2}<4$ if and only if $1+4 h^{2}<4$, which rearranges to $h^{2}<\frac{3}{4}$. Since $h>0$, this condition is equivalent to $h<\sqrt{3} / 2$.
(iii) The gradient of the line is $-h$ because the $y$-value changes by $-2 h$ between $x=1$ and $x=3$. The line goes through $(3,0)$ and has equation $y=-h(x-3)$.
We could look for repeated roots between $x^{2}+y^{2}=4$ and $y=-h(x-3)$. In general if I substitute one into the other I get $x^{2}+h^{2}(x-3)^{2}=4$. If $h=2 / \sqrt{5}$ then this is $5 x^{2}+4(x-3)^{2}=20$. If we multiply this out, rearrange, and factorise, we get $(3 x-4)^{2}=0$ indicating that there is a double root at $x=4 / 3$, so the line is tangent to the circle.
(iv) In this case, the point $(1,2 h)$ is outside the circle, because $\frac{2}{\sqrt{5}}>\frac{\sqrt{3}}{2}$ (I know this because $\left.\frac{4}{5}>\frac{3}{4}\right)$. The diagram is like the first picture in the question. The area inside both is the area of the sector with angle $\theta$. So the area is $4 \pi \frac{\theta}{360^{\circ}}$ where $\tan \theta=2 h$.
(v) In this case, the point $(1,2 h)$ is inside the circle, because $\frac{6}{7}<\frac{\sqrt{3}}{2}$ (I know this because $\frac{36}{49}<\frac{3}{4}$ (I know this because $144<147$ )). The diagram is like the second picture in the question.
Check that $(8 / 5,6 / 5)$ lies on the circle; $(8 / 5)^{2}+(6 / 5)^{2}=(64 / 25)+(36 / 25)=4$. Check that $(8 / 5,6 / 5)$ lies on the line; $-\frac{6}{7}\left(\frac{8}{5}-3\right)=\frac{6}{5}$.
The area is made up of a triangle with corners $(0,0)$ and $(1,12 / 7)$ and $(8 / 5,6 / 5)$, plus a sector of a circle from the $x$-axis up to the line from the origin to $(8 / 5,6 / 5)$.
Using the formula in the question, the area of the triangle is $\frac{27}{35}$. The area of the sector is $4 \pi \frac{\alpha}{360^{\circ}}$ where $\tan \alpha=\frac{6}{8}$. Add these.

## Extension

- Let $A$ be $(a, b)$ and let $C$ be $(c, d)$ and let $M$ be $(a, 0)$ and let $N$ be $(c, 0)$. The area we want is the triangle $O C N$ plus the trapezium $N C A M$ minus the triangle $O A M$. If we find all of these and simplify, we get $\frac{1}{2}(a d-b c)$. The absolute value signs come in because I haven't been very careful; I've assumed that $(a, b)$ and $(c, d)$ are a particular way around.
- Consider the cross product of the vectors $(a, b, 0) \times(c, d, 0)=(0,0, a d-b c)$. We also know that the magnitude of $\mathbf{a} \times \mathbf{b}$ is $|\mathbf{a}||\mathbf{b}| \sin \theta$, which is (almost) exactly the formula for the area of the triangle. So we just need to take the magnitude of $\mathbf{a} \times \mathbf{b}$ and divide by 2 to get the area of the triangle.

