MAT syllabus

Laws of logarithms and exponentials. Solution of the equation $a^{x}=b$.

Revision

- $a^{m} a^{n}=a^{m+n}$ for any positive real number a and any real numbers m and n.
- $\left(a^{m}\right)^{n}=a^{m n}$ for any positive real number a and any real numbers m and n.
- $a^{-n}=\frac{1}{a^{n}}$ for any positive real number a and any real number n.
- $a^{0}=1$ for any non-zero real number a.
- The solution to $a^{x}=b$ where a and b are positive numbers (with $a \neq 1$) is $\log _{a}(b)$. In this expression, the number a is called the base of the logarithm.
- $\log _{a}(x)$ is a function of x which is defined when $x>0$. Like with $\sin x$, sometimes the brackets are omitted if it's clear what the function is being applied to, so we might write $\log _{a} x$.
- $\log _{a} x$ doesn't repeat any values; if $\log _{a} x=\log _{a} y$ then $x=y$.
- Note the special case $\log _{a} a=1$ because $\log _{a} a$ is the solution x to the equation $a^{x}=a$, and that solution is 1 .
- In fact, $\log _{a}\left(a^{x}\right)=x$.
- In that sense, the logarithm function is the inverse function for $y=a^{x}$.
- $a^{\log _{a} x}=x$.
- $\log _{a}(x y)=\log _{a}(x)+\log _{a}(y)$.
- $\log _{a}\left(x^{k}\right)=k \log _{a} x$ including $\log _{a} \frac{1}{x}=-\log _{a} x$.
- There's a mathematical constant called e, which is just a number (it's about 2.7).
- e^{x} is called the exponential function.
- The laws of indices and laws of logarithms above hold when the base a is equal to e.
- $\log _{e} x$ is sometimes written as $\ln x$ and the function is sometimes called the natural logarithm.

Revision Questions

1. Simplify $\left(2^{3}\right)^{4}$ and $\left(2^{4}\right)^{3}$ and $2^{4} 2^{3}$ and $2^{3} 2^{4}$.
2. Solve $x^{-2}+4 x^{-1}+3=0$.
3. Simplify $\log _{10} 3+\log _{10} 4$ into a single term.
4. Write $\log _{3}\left(x^{2}+3 x+2\right)$ as the sum of two terms, each involving a logarithm.
5. Solve $\log _{x}\left(x^{2}\right)=x^{3}$.
6. Solve $\log _{x}(2 x)=3$ for $x>0$.
7. Solve $\log _{x+5}(6 x+22)=2$.
8. Let $a=\ln 2$ and $b=\ln 5$, and write the following in terms of a and b.

$$
\ln 1024, \quad \ln 40, \quad \ln \sqrt{\frac{2}{5}}, \quad \ln \frac{1}{10}, \quad \ln 1.024
$$

9. Expand $\left(e^{x}+e^{-x}\right)\left(e^{y}-e^{-y}\right)+\left(e^{x}-e^{-x}\right)\left(e^{y}+e^{-y}\right)$.

Expand $\left(e^{x}+e^{-x}\right)\left(e^{y}+e^{-y}\right)+\left(e^{x}-e^{-x}\right)\left(e^{y}-e^{-y}\right)$.
10. Solve $2^{x}=3$. Solve $0.5^{x}=3$. Solve $4^{x}=3$.
11. For which values of x (if any) does $1^{x}=1$? For which values of x (if any) does $1^{x}=3$?
12. For what values of b (if any) does $0^{b}=0$? For what values of a (if any) does $a^{0}=0$?
13. Given $\log _{10}\left(\log _{10} x\right)=6$, how many zeros are there at the end of the number x ?
14. Solve $e^{x}+e^{-x}=4$.

How many solutions are there to $e^{x}+e^{-x}=c$? Identify different cases in terms of c.
15. Prove that $\ln \left(N+\sqrt{N^{2}-1}\right)=-\ln \left(N-\sqrt{N^{2}-1}\right)$ for any number $N \geqslant 1$.
16. Consider the equation $x^{y}=y^{x}$ with $x, y>0$. Use logarithms to turn this into an equation of the form $f(x)=f(y)$. [Harder] Sketch $f(x)$.
17. Simplify $a^{k \log _{a} b}$ for positive numbers a, b, k.
18. Consider the number $x=\log _{a} b \log _{b} c$. By simplifying a^{x}, show that $x=\log _{a} c$.
19. Similarly, show that $\log _{a} b=\frac{\log _{c} b}{\log _{c} a}$ for positive numbers a, b, c, and hence $\log _{a} b=\frac{\ln b}{\ln a}$.

MAT questions

MAT 2007 Q1I
Given that a and b are positive and

$$
4\left(\log _{10} a\right)^{2}+\left(\log _{10} b\right)^{2}=1,
$$

then the greatest possible value of a is
(a) $\frac{1}{10}$,
(b) 1 ,
(c) $\sqrt{10}$,
(d) $10^{\sqrt{2}}$.

MAT 2008 Q1B

Which is the smallest of these values?
(a) $\log _{10} \pi$,
(b) $\sqrt{\log _{10}\left(\pi^{2}\right)}$,
(c) $\left(\frac{1}{\log _{10} \pi}\right)^{3}$,
(d) $\frac{1}{\log _{10} \sqrt{\pi}}$.

MAT 2008 Q1E

The highest power of x in

$$
\left\{\left[\left(2 x^{6}+7\right)^{3}+\left(3 x^{8}-12\right)^{4}\right]^{5}+\left[\left(3 x^{5}-12 x^{2}\right)^{5}+\left(x^{7}+6\right)^{4}\right]^{6}\right\}^{3}
$$

is
(a) x^{424},
(b) x^{450},
(c) x^{500},
(d) x^{504}.

MAT 2010 Q1E

Which is the largest of the following four numbers?
(a) $\log _{2} 3$,
(b) $\log _{4} 8$,
(c) $\log _{3} 2$,
(d) $\quad \log _{5} 10$.

MAT 2012 Q1C (modified)
Which is the smallest of the following numbers?
(a) $(\sqrt{3})^{3}$,
(b) $\quad \log _{3}\left(9^{2}\right)$,
(c) $\quad\left(3 \sin 60^{\circ}\right)^{2}$,
(d) $\quad \log _{2}\left(\log _{2}\left(8^{5}\right)\right)$.
[See the next page for hints]

Hints

MAT 2007 Q1I

- If I squint at the left-hand side, it looks a bit like the sum of two squares. Let's write $x=\log _{10} a$ and $y=\log _{10} b$ and see what happens.

MAT 2008 Q1B

- When is x bigger than $\sqrt{2 x}$? When is x bigger than $2 / x$?

You'll need to use the fact that $1<\pi<10$, but you shouldn't need to use any more detailed knowledge of the value of π than that.

MAT 2008 Q1E

- What's the highest power of x in $\left(2 x^{6}+7\right)^{3}$? Do not multiply out! Now look at the other terms too.
We can ignore the outer-most power of 3 while we're comparing terms, but don't forget about it at the end.

MAT 2010 Q1E

- You can evaluate one of these exactly. Which one? Next, I would aim to compare the others to that one.

Here's a strategy to do that sort of comparison; let's say that we're comparing $\log _{2} 3$ against $\frac{p}{q}$ for some fraction $\frac{p}{q}$. Is $\log _{2} 3<\frac{p}{q}$? Well, if it is, then $3<2^{p / q}$, so $3^{q}<2^{p}$. You've got particular values of p and q in mind; go for it!
You might like to reflect on why it's OK to manipulate the inequalities like this.

MAT 2012 Q1C

- Simplify each number as much as you can before doing any comparisons.

Extension

[Just for fun, not part of the MAT question]

- Given a positive number α, which is the smallest of these values? Identify the different cases according to α.
(a) α,
(b) $\sqrt{2 \alpha}$,
(c) α^{-3}
(d) $\frac{2}{\alpha}$.
- Which is larger, $(8!)^{9}$ or $(9!)^{8}$?

