MAT syllabus

Co-ordinate geometry and vectors in the plane. The equations of straight lines and circles. Basic properties of circles. Lengths of arcs of circles.

Revision

- Points in the plane can be described with two co-ordinates (x, y). The x-axis is the line $y=0$, and the y-axis is the line $x=0$.
- A vector $\binom{x}{y}$ can store the same information as a pair of co-ordinates. Used in that sense, the vector is called a position vector.
- A vector can also describe the displacement from one point to another, so that $\binom{2}{1}$ could represent the displacement from $(1,1)$ to $(3,2)$ for example.
- Vectors can be added by adding the components separately. To show that in a diagram, we might interpret the first vector as a position vector (drawing an arrow starting from the origin) and then interpret the second as a displacement (drawing an arrow starting from the end of the first vector).
- The magnitude of the vector $\binom{x}{y}$ is $\sqrt{x^{2}+y^{2}}$.
- The distance from A to B is the magnitude of the vector displacement from A to B. The distance from $\left(x_{1}, y_{1}\right)$ to $\left(x_{2}, y_{2}\right)$ is $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.
- A vector can be multiplied by a number by multiplying each component by that number. The result is a vector in the same direction but with scaled magnitude.
- A straight line has equation $y=m x+c$, where m is the gradient and c is the y-intercept. Other ways to write the equation of a line are $a x+b y+c=0$ (where that's a different c to the one in the previous expression) or $y-y_{1}=m\left(x-x_{1}\right)$. The last expression is useful because that line goes through the point $\left(x_{1}, y_{1}\right)$ and has gradient m, which might be information that we've been given.
- Two lines are parallel if and only if they have the same gradient. Two lines are perpendicular if and only if their gradients multiply to give -1 .
- The equation of the circle with centre (a, b) and radius r is $(x-a)^{2}+(y-b)^{2}=r^{2}$.
- The angle in a semicircle is a right angle; if $A B$ is the diameter of a circle, and C is on the circle, then $\angle A C B=90^{\circ}$.
- The tangent is at right angles to the radius at any point on a circle's circumference.
- A circle with radius r has area πr^{2} and circumference $2 \pi r$.
- If two radii of a circle of radius r make an angle of $\theta<180^{\circ}$ (in degrees), then the length of the minor arc between those radii is $\frac{\theta}{360^{\circ}} 2 \pi r$. The area of the sector enclosed by that arc and the radii is $\frac{\theta}{360^{\circ}} \pi r^{2}$.

Revision Questions

1. Draw a diagram to show the three separate position vectors $\binom{3}{2}$ and $\binom{-4}{1}$ and $\binom{1}{-2}$.
2. Add the vectors $\binom{3}{2}$ and $\binom{-4}{1}$. Show this on your diagram.
3. Find $3\binom{-4}{1}+2\binom{1}{-2}$. Show this on your diagram.
4. Find the equation of the line through the points $(1,5)$ and $(3,-1)$.
5. Find the equation of the line through the point $(3,5)$ with gradient 2 .
6. Show that the points $(0,5),(1,3),(2,6)$, and $(3,4)$ lie on the corners of a square.
7. Find equations of three lines such that the finite region bounded by the three lines is an equilateral triangle.
8. A circle has centre $(-1,2)$ and radius 3 . Write down an equation for the circle. What's the area of this circle? Where does this circle cross the axes?
9. A circle is given by $x^{2}+9 x+y^{2}-3 y=10$. Find the centre and radius of the circle.
10. Points A and B lie on a circle with centre O and radius 2. The angle $\angle A O B$ is 120°. Find the length of the arc between A and B. Find the area enclosed by that arc and the radii $O A$ and $O B$.
11. Two circles are given by $x^{2}+y^{2}=4$ and $(x-2)^{2}+y^{2}=4$. Find the area of the region that's inside both circles.
12. The points $(0,0)$ and $(1, a)$ and $\left(0, a+a^{-1}\right)$ all lie on the same circle. Find the centre of the circle in terms of a.
13. A circle has centre $(c, 0)$ and radius 1 . The area in the region $x>0$ which is inside the circle depends on c, and we'll call it $A(c)$. Sketch a graph of $A(c)$ against c.

MAT questions

MAT 2008 Q4
Let p and q be positive real numbers. Let P denote the point $(p, 0)$ and let Q denote the point $(0, q)$.

(i) Show that the equation of the circle C which passes through P, Q, and the origin O is

$$
x^{2}-p x+y^{2}-q y=0
$$

Find the centre and area of C.
(ii) Show that

$$
\frac{\text { area of circle } C}{\text { area of triangle } O P Q} \geqslant \pi
$$

(iii) Find expressions for the angles $O P Q$ and $O Q P$ if

$$
\frac{\text { area of circle } C}{\text { area of triangle } O P Q}=2 \pi
$$

[See the next page for hints]

Hints

(i) My strategy for this part is to solve in the opposite order; I'll write down an equation for the circle which I'm happy with, and then I'll make it look like the one in the question.
In general the equation for a circle is $(x-a)^{2}+(y-b)^{2}=r^{2}$. We can plug in the points that we know lie on the circle and we'll get equations for a and b and r.
To find the centre and radius, I can either rearrange the expression in the question to make it look more like a familiar equation for a circle. Or I could use some of my working above.
Alternatively, draw a right-angle on your copy of the diagram and recall a geometric fact about circles.
(ii) We know expressions for both of these areas in terms of p and q. Then we've got an inequality to prove.
To prove an inequality like $a^{2}+b^{2} \geqslant 2 a b$, we might move all the terms to one side and try to spot a square (because squares are positive or zero).
(iii) The inequality is now an equality! Time to solve for p and $q \ldots$ except we can't. Not entirely, that is. There's a bit of ambiguity because if we double p and also double q then both areas will go up by a factor of 4 , so the equality will still hold. At best, we can work out the ratio between p and q. This is enough to find the angles in terms of inverse trigonometric functions (can you see why?)
There's another ambiguity; we don't know which way round P and Q are (which one is larger? We don't know). Hopefully, we'll get an equation with at least two solutions.

Extension

[Just for fun, not part of the MAT question]

- Here's an equation for $\tan 2 \theta$ (not on the MAT syllabus).

$$
\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}
$$

Set θ to be the value of angle $O P Q$ you found in this question, for which you know the value(s) of $\tan \theta$. Calculate $\tan 2 \theta$. Deduce the exact value(s) of θ in degrees.

- Find the minimum value of $x+x^{-1}$ for $x>0$.

MAT 2010 Q4 (modified)

The three corners of a triangle T are $(0,0),(3,0),(1,2 h)$ where $h>0$. The circle C has equation $x^{2}+y^{2}=4$. The angle of the triangle at the origin is denoted as θ. The circle and triangle are drawn in the diagrams above for different values of h.
(i) $\operatorname{Express} \tan \theta$ in terms of h.
(ii) Show that the point $(1,2 h)$ lies inside C when $h<\sqrt{3} / 2$.
(iii) Find the equation of the line connecting $(3,0)$ and $(1,2 h)$.

Show that this line is tangential to the circle C when $h=2 / \sqrt{5}$.
(iv) Suppose now that $h>2 / \sqrt{5}$. Find the area of the region inside both C and T in terms of θ.
(v) Now let $h=6 / 7$. Show that the point $(8 / 5,6 / 5)$ lies on both the line (from part (iii)) and the circle C.

Hence show that the area of the region inside both C and T equals

$$
\frac{27}{35}+\frac{\alpha \pi}{90^{\circ}}
$$

where α is an angle in degrees whose tangent, $\tan \alpha$, you should determine.
[You may use the fact that the area of a triangle with corners at $(0,0),(a, b),(c, d)$ equals $\frac{1}{2}|a d-b c|$.]
[See the next page for hints]

Hints

(i) Drop a perpendicular line from $(1,2 h)$ to the x-axis. Your equation for $\tan \theta$ should be nice and simple.
(ii) Points inside the circle have $x^{2}+y^{2}<4$, because the distance from such a point to the origin is less than 2. For this question, this is an inequality involving h. Try to rearrange it for h.
(iii) Careful; the point of tangency is not $(1,2 h)$. To be tangential, we would need a single point which is on the line and also on the circle $x^{2}+y^{2}=4$.
(iv) In order to get our picture right, we'll need to know whether that point is inside or outside the circle. A good way to compare numbers like \sqrt{a} / b and c / \sqrt{d} is to compare their squares.
Remember that we know the area of a sector of a circle.
(v) This case is different from the previous part. Again, check whether the point $(1,2 h)$ lies inside the circle using part (ii). We'll need to compare some square roots again.

The question gives us the coordinates of a point where the line crosses the circle. Mark this on your diagram.
The part of the answer that's a rational number could come from the area of a triangle using the hint at the end of the question. The part of the answer that involves angles and π is related to the area of a circle. We might guess that an expression like this comes from the area of a triangle plus the area of a sector.

Extension

[Just for fun, not part of the MAT question]

- If you've learned about the area of a trapezium, drop perpendiculars from (a, b) and (c, d) to the x-axis, identify the areas of two right-angled triangles and one trapezium, and deduce the fact about triangle area given in this question.
- If you've learned about the vector product (also known as the cross product), explain the fact about triangle area given in this question.

