MAT syllabus

Sequences defined iteratively and by formulae. Arithmetic and geometric progressions^{*}. Their sums^{*}. Convergence condition for infinite geometric progressions^{*}. * Part of full A-level Mathematics syllabus.

Revision

- A sequence a_n might be defined by a formula for the n^{th} term like $a_n = n^2 n$.
- A sequence a_n might be defined with an relation like $a_{n+1} = f(a_n)$ for $n \ge 0$, if we're given the function f(x) and also given a first term like $a_0 = 1$. (The "first term" might be a_0 if we feel like counting from zero).
- The sum of the first *n* terms of a sequence a_k can be written with the notation $\sum_{k=0}^{n-1} a_k$

(if the first term is
$$a_0$$
) or $\sum_{k=1}^n a_k$ (if the first term is a_1).

- An arithmetic sequence is one where the difference between terms is constant. The terms can be written as $a, a + d, a + 2d, a + 3d, \ldots$, where a is the first term and d is the common difference.
- The sum of the first n terms of an arithmetic sequence with first term a and common difference d is $\frac{n}{2}(2a + (n-1)d)$, which you can remember as "first term plus last term, times the number of terms, divided by two".
- A geometric sequence is one where the ratio between consecutive terms is constant. The terms can be written as a, ar, ar^2 , ar^3 , ... where a is the first term and r is the common ratio.
- The sum of the first *n* terms of a geometric sequence with first term *a* and common ratio *r* is $\frac{a(1-r^n)}{1-r}$. One way to remember this is to remember what happens if we multiply the sum of the first *n* terms of a geometric series by (1-r),

$$(1-r)(a + ar + \dots + ar^{n-1}) = (a - ar) + (ar - ar^2) + \dots + (ar^{n-1} - ar^n)$$
$$= a - ar^n.$$

• For a geometric sequence a_n , the sum to infinity is written as $\sum_{k=0}^{\infty} a_k$. If the common ratio r satisfies |r| < 1 then this is equal to $\frac{a}{1-r}$. If $|r| \ge 1$ then this sum to infinity does not converge (it does not approach any particular real number).

Revision Questions

- 1. A sequence is defined by $a_n = n^2 n$. What is a_3 ? What is a_{10} ? Find $a_{n+1} a_n$ in terms of n. Find $a_{n+1} 2a_n + a_{n-1}$ in terms of n.
- 2. A sequence is defined by $a_0 = 1$ and $a_n = a_{n-1} + 3$ for $n \ge 1$. Find $a_0 + a_1 + \cdots + a_{10}$. Find a_{1000} .
- 3. A sequence is defined by $a_0 = 1$ and $a_n = \frac{a_{n-1}}{3}$ for $n \ge 1$. Find $a_0 + a_1 + \cdots + a_{10}$. Find a_{1000} . Does the sum of all the terms of this sequence converge? If it does, what is the sum to infinity?
- 4. A sequence is defined by $a_0 = 1$ and $a_n = 3a_{n-1} + 1$ for $n \ge 1$. A sequence b_n is defined by $b_n = A \times 3^n + B$ where A and B are real numbers. Find values for A and B such that $a_n = b_n$ for all $n \ge 0$.
- 5. A sequence is defined by $a_n = An^2 + Bn + C$ where A, B, and C are real numbers. Find A, B, and C in terms of a_0 , a_1 , and a_2 .
- 6. When does the sum $1 + x^3 + x^6 + x^9 + x^{12} + \dots$ converge? Simplify it in the case that it converges.
- 7. When does the sum $2 x + \frac{x^2}{2} \frac{x^3}{4} + \dots$ converge? Simplify it in the case that it converges.
- 8. If the first term of an arithmetic progression is 5 and the common difference is 3, what is the 15^{th} term?
- 9. The sum of the first k terms of an arithmetic progression is equal to the sum of the next k terms. What can you deduce?
- 10. If the sum of the first n terms of an arithmetic progression is $3n^2 + 5n$, what is the n^{th} term?
- 11. What is the sum of the first 100 positive even integers (starting at 2)?
- 12. The first term of a geometric progression is 3 and the third term is 27. Find two possibilities for the sum of the first 5 terms.
- 13. A sequence is defined by $a_0 = 3$ and then for $n \ge 1$ a_n is the sum of all previous terms. Find a_n in terms of n for $n \ge 1$.
- 14. A sequence is defined by $C_0 = 1$ and then for $n \ge 0$,

$$C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}.$$

Find C_1 and C_2 and C_3 and C_4 .

MAT questions

MAT 2008 Q2

(i) Find a pair of positive integers, x_1 and y_1 , that solve the equation

$$(x_1)^2 - 2(y_1)^2 = 1.$$

(ii) Given integers a, b, we define two sequences x_1, x_2, x_3, \ldots and y_1, y_2, y_3, \ldots by setting

 $x_{n+1} = 3x_n + 4y_n, \qquad y_{n+1} = ax_n + by_n, \qquad \text{for } n \ge 1.$

Find *positive* values for a, b such that

$$(x_{n+1})^2 - 2(y_{n+1})^2 = (x_n)^2 - 2(y_n)^2.$$

- (iii) Find a pair of integers X, Y which satisfy $X^2 2Y^2 = 1$ such that X > Y > 50.
- (iv) Using the values of a and b found in part (ii), what is the approximate value of x_n/y_n as n increases?

[See the next page for hints]

Hints

- (i) Searching small values of x_1 or small values of y_1 is a good idea here. We're only asked to find a pair, not all such pairs. The question doesn't specific whether zero counts as a positive number (some people do count it, some people don't), so that's up to you.
- (ii) Substitute everything in and hope for the best. We want this to be true for lots of different values of x_n and y_n (presumably), so we might aim to do something like comparing coefficients.

Hopefully this will give us some equations involving a and b. We're not too worried about finding all possible solutions here; we're just looking for anything that works, and that has a and b positive.

(iii) This part of the question is all about understanding the previous part. We found a way to generate a sequence x_n and a sequence y_n , and we showed that the sequences satisfy some sort of rule. Why did we do that? What's it got to do with the value of $X^2 - 2Y^2$?

It's easy to get distracted by the relationship that we've just proved if you're looking for a link between x_{n+1} and x_n . Don't forget that we also have rules like $x_{n+1} = 3x_n + 4y_n$ which are easier to work with if we want to calculate x_{n+1} from our knowledge of previous values of x_n and y_n .

Alternatively, try large numbers Y until you find one with $2Y^2 + 1$ equal to a square number. This might take a while!

(iv) From our work on the previous parts, we know that x_n and y_n satisfy a particular equation. We also know that x_n and y_n will be large for large n. Can you see how to convert the equation you've got into a fact about x_n/y_n ?

Extension

[Just for fun, not part of the MAT question]

• Find some rational approximations to $\sqrt{3}$ with a similar method.

MAT 2012 Q5

A particular robot has three commands; **F**: Move forward a unit distance; **L**: Turn left 90° **R**: Turn right 90°

A program is a sequence of commands. We consider particular programs P_n (for $n \ge 0$) in this question. The basic program P_0 just instructs the robot to move forward:

$$P_0 = \mathbf{F}.$$

The program P_{n+1} (for $n \ge 0$) involves performing P_n , turning left, performing P_n , turning left, performing P_n again, then turning right:

$$P_{n+1} = P_n \mathbf{L} P_n \mathbf{R}.$$

So, for example, $P_1 = \mathbf{FLFR}$.

- (i) Write down the program P_2 .
- (ii) How far does the robot travel during the program P_n ? In other words, how many **F** commands does it perform?
- (iii) Let l_n be the total number of commands in P_n ; so, for example, $l_0 = 1$ and $l_1 = 4$. Write down an equation relating l_{n+1} to l_n . Hence write down a formula for l_n in terms of n. **Hint:** consider $l_n + 2$.
- (iv) The robot starts at the origin, facing along the positive x-axis. What direction is the robot facing after performing the program P_n ?
- (v) Draw the path the robot takes when it performs the program P_4 .
- (vi) Let (x_n, y_n) be the position of the robot after performing the program P_n , so $(x_0, y_0) = (1, 0)$ and $(x_1, y_1) = (1, 1)$. Give an equation relating (x_{n+1}, y_{n+1}) to (x_n, y_n) What is (x_8, y_8) ? What is (x_{8k}, y_{8k}) ?

[See the next page for hints]

Hints

- (i) Extend what we've learned about P_1 to P_2 . I suppose $P_2 = P_1 \mathbf{L} P_1 \mathbf{R}$ but we can do better than that!
- (ii) How many **F** commands are there in P_0 , P_1 , and P_2 ?
- (iii) l_{n+1} is the length of P_{n+1} . How long are P_0 , P_1 , and P_2 ? From the definition $P_{n+1} = P_n \mathbf{L} P_n \mathbf{R}$, what would you expect the length of P_3 ? It's hard to solve this recursion relation using MAT-level maths. Luckily, there's a hint. We could give the sequence $l_n + 2$ a name like a_n and try to convert our fact about l_{n+1} and l_n into a fact about a_{n+1} and a_n .
- (iv) How many **L** commands are there in P_n ? How many **R** commands are there in P_n ?
- (v) Draw paths for P_1 and P_2 and P_3 first.

Remember that the robot spins on the spot for \mathbf{L} and for \mathbf{R} .

Remember that, during P_2 , the robot turns at the end of P_1 and then immediately turns again for the **L** before the next P_1 starts.

At the end of each P_n , the robot is facing in a particular direction which might or might not be the direction of the most recent **F** command that it moved (it might have done some spinning at the end).

- (vi) Here are two things to think about.
 - What would happen if we started the robot at (a, b) and ran program P_n ?
 - What would happen if we started the robot at (0,0) and ran $\mathbf{L}P_n$?

Find (x_2, y_2) and (x_3, y_3) and so on up to (x_8, y_8) . If you spot any shortcuts, take them! Describe a simpler program **Q** that takes the robot from (0, 0) to (x_8, y_8) (literally a shortcut for the robot to take). Explain why (x_9, y_9) is the same position that a robot would end up in if it ran the program **QLQR**. Why is this a bit like the calculations you just did for (x_2, y_2) and (x_3, y_3) ?