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-I- INTRODUCTION

Shape optimization : minimize an objective function over a set Uad of

admissibles shapes Ω (including possible constraints)

inf
Ω∈Uad

J(Ω)

The objective function is evaluated through a partial differential equation

(state equation)

J(Ω) =

∫

Ω

j(uΩ) dx

where uΩ is the solution of

PDE(uΩ) = 0 in Ω

Topology optimization : the optimal topology is unknown.
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✞

✝

☎

✆
The model of linear elasticity

A shape is an open set Ω ⊂ R
d with boundary ∂Ω = Γ ∪ ΓN ∪ ΓD.

For a given applied load g : ΓN → R
d, the displacement u : Ω → R

d is the

solution of


























− div (Ae(u)) = 0 in Ω

u = 0 on ΓD
(

Ae(u)
)

n = g on ΓN
(

Ae(u)
)

n = 0 on Γ

with the strain tensor e(u) = 1
2 (∇u+∇tu), the stress tensor σ = Ae(u), and

A an homogeneous isotropic elasticity tensor.

Typical objective function: the compliance

J(Ω) =

∫

ΓN

g · u dx,
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✞

✝

☎

✆
Example: the cantilever

Γ

Γ

Γ

Γ

N

D

D
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✞

✝

☎

✆
Admissible shapes

The shape optimization problem is

inf
Ω∈Uad

J(Ω),

where the set of admissible shapes is typically

Uad =

{

Ω ⊂ D open set such that ΓD

⋃

ΓN ⊂ ∂Ω and

∫

Ω

dx = V0

}

,

where D ⊂ R
d is a given “working domain” and V0 is a prescribed volume.

☞ The boundary subsets ΓD and ΓN are fixed. Only Γ is optimized (free

boundary).

☞ Existence of optimal shapes is a delicate issue (typically, one needs further

constraints in Uad).

☞ A nice numerical method is the level set algorithm since it allows for

topology changes.
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✞

✝

☎

✆
Industrial applications

☞ Tremendous progresses were achieved on academic research about shape

and topology optimization.

☞ There are several commercial softwares used by industry.

☞ But manufacturability of the optimal shapes is not always guaranteed.
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✞

✝

☎

✆
Goal of the present work

☞ We want to add geometrical constraints (for manufacturability), i.e.,

constraints on Ω, not on the state uΩ.

☞ The level set framework is well suited for this because it relies on the

distance function to the boundary.

☞ Issues to be addressed concerning geometrical constraints: modelling,

shape differentiation, numerical implementation.

Before that, let’s review the state of the art about the level set

method for shape and topology optimization.
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-II- LEVEL SET METHOD

A new numerical implementation of an old idea...

☞ Framework of Hadamard’s method of shape variations.

☞ Main tool: the level set method of Osher and Sethian (JCP 1988).

☞ Shape capturing algorithm.

☞ Fixed mesh: low computational cost.

☞ Early references: Sethian and Wiegmann (JCP 2000), Osher and Santosa

(JCP 2001), Allaire, Jouve and Toader (CRAS 2002, JCP 2004, CMAME

2005), Wang, Wang and Guo (CMAME 2003).
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Shape tracking Shape capturing
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✞

✝

☎

✆FRONT PROPAGATION BY LEVEL SET

Shape capturing method on a fixed mesh of the “working domain” D.

A shape Ω is parametrized by a level set function















ψ(x) = 0 ⇔ x ∈ ∂Ω ∩D

ψ(x) < 0 ⇔ x ∈ Ω

ψ(x) > 0 ⇔ x ∈ (D \ Ω)

Assume that the shape Ω(t) evolves in time t with a normal velocity V (t, x).

Then its motion is governed by the following Hamilton Jacobi equation

∂ψ

∂t
+ V |∇xψ| = 0 in D.
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✞

✝

☎

✆
Example of a level set function
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✞

✝

☎

✆
Advection velocity = shape gradient

The velocity V is deduced from the shape gradient of the objective function.

To compute this shape gradient we recall the well-known Hadamard’s method.

Let Ω0 be a reference domain. Shapes are parametrized by a vector field θ

Ω = ( Id + θ)Ω0 with θ ∈ C1(Rd;Rd).

x

Ω

x+  (x)θ

0
  d 0(Ι  +θ)Ω
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✞

✝

☎

✆
Shape derivative

Definition: the shape derivative of J(Ω) at Ω0 is the Fréchet differential of

θ → J
(

( Id + θ)Ω0

)

at 0.

Hadamard structure theorem: the shape derivative of J(Ω) can always be

written (in a distributional sense)

J ′(Ω0)(θ) =

∫

∂Ω0

θ(x) · n(x) j(x) ds

where j(x) is an integrand depending on the state u and an adjoint p.

We choose the velocity V = θ · n such that J ′(Ω0)(θ) ≤ 0.

Simplest choice: V = θ · n = −j but other ones are possible (including

regularization).
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✄

✂

�

✁SHAPE DERIVATIVE OF THE COMPLIANCE

J(Ω) =

∫

ΓN

g · uΩ ds =

∫

Ω

Ae(uΩ) · e(uΩ) dx,

where uΩ is the state variable in Ω.

J ′(Ω)(θ) = −

∫

Γ

Ae(uΩ) · e(uΩ) θ · nds,

Remarks:

1. self-adjoint problem (no adjoint state is required),

2. taking into account the volume constraint add a fixed Lagrange multiplier

λ−Ae(uΩ) · e(uΩ).
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✞

✝

☎

✆NUMERICAL ALGORITHM

1. Initialization of the level set function ψ0 (including holes).

2. Iteration until convergence for k ≥ 1:

(a) Compute the elastic displacement uk for the shape ψk.

Deduce the shape gradient = normal velocity = Vk

(b) Advect the shape with Vk (solving the Hamilton Jacobi equation) to

obtain a new shape ψk+1.

For numerical examples, see the web page:

http://www.cmap.polytechnique.fr/˜optopo/level en.html

Geometrical constraints in topology optimization G. Allaire



17

✞

✝

☎

✆
Examples of results with complex topologies
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-III- GEOMETRICAL CONSTRAINTS

We focus on thickness control because of

• manufacturability,

• uncertainty in the microscale (MEMS design),

• robust design (fatigue, buckling, etc.).

Existing works:

• Several approaches in the framework of the SIMP method to ensure

minimum length scale (Sigmund, Poulsen, Guest, etc.).

• In the level-set framework: Chen, Wang and Liu implictly control the

feature size by adding a ”line” energy term to the objective function ;

Alexandrov and Santosa kept a fixed topology by using offset sets.

• Many works in image processing.
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✞

✝

☎

✆
Signed-distance function

Definition. Let Ω ⊂ R
d be a bounded domain. The signed distance

function to Ω is the function R
d ∋ x 7→ dΩ(x) defined by :

dΩ(x) =















−d(x, ∂Ω) if x ∈ Ω

0 if x ∈ ∂Ω

d(x, ∂Ω) if x ∈ R
d \ Ω

where d(·, ∂Ω) is the usual Euclidean distance.
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✞

✝

☎

✆Constraint formulations

Maximum thickness.

Let dmax be the maximum allowed thickness. The constraint reads:

dΩ (x) ≥ −dmax/2 ∀x ∈ Ω

Minimum thickness

Let dmin be the minimum allowed thickness. The constraint reads:

dΩ (x− doffn (x)) ≤ 0 ∀x ∈ ∂Ω, ∀doff ∈ [0, dmin]

Remark: similar constraints for the thickness of holes.
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✞

✝

☎

✆Offset sets

For minimum thicknes we rely on the classical notion of offset sets of the

boundary of a shape, defined by

{x− doffn(x) such that x ∈ ∂Ω}
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✞

✝

☎

✆Caution with minimum thickness !

Writing a constraint for a single (large) value of doff does not work !

This is the reason why all values of doff between 0 and dmin are taken into

account.
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✞

✝

☎

✆
Quadratic penalty method

We reformulate the pointwise constraint into a global one denoted by P (Ω).

Maximum thickness

P (Ω) =

∫

Ω

[

(dΩ(x) + dmax/2)
−
]2

dx

Minimum thickness

P (Ω) =

∫

∂Ω

∫ dmin

0

[

(dΩ (x− doffn (x)))
+
]2

dx ddoff

where f+ = max (f, 0) and f− = min (f, 0).
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✞

✝

☎

✆
Property of the signed distance function

The signed distance function has a tent-like shape.

Geometrical constraints in topology optimization G. Allaire



25

✞

✝

☎

✆
Rays and skeleton of Ω

• The skeleton (or ridge) is made of the points x ∈ Ω where there are

multiple minimizers for

d(x, ∂Ω) = min
y∈∂Ω

‖x− y‖.

• Equivalently, the skeleton is the set of points where n = ∇dΩ is

discontinuous.

• Equivalently (Huygens principle) the skeleton is the geometric location of

centers of maximal disks.
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✞

✝

☎

✆
Rays and skeleton (Ctd.)

The ray issued from x ∈ ∂Ω is the integral curve of n = ∇dΩ.

The rays are straight lines because ẋ(t) = n(x(t)) implies t = dΩ(x(t)).
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✞

✝

☎

✆
Shape derivative of the signed-distance function

Lemma. Fix x ∈ Ω \ Skeleton. Define p∂Ω(x) the unique point on ∂Ω such

that

d(x, ∂Ω) = ‖x− p∂Ω(x)‖.

Then, the ”pointwise” shape derivative is

d′Ω(θ)(x) =
(

θ · n
)

(p∂Ω(x)) .

Remarks.

• The computation of the shape derivative of the signed-distance function is

classical (e.g. Delfour and Zolesio).

• The shape derivative d′Ω(θ) remains constant along the normal and rays

(but is discontinuous on the skeleton).
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Lemma. For a function j ∈ C1(R) define

J(Ω) =

∫

D

j(dΩ(x)) dx.

Then J is shape differentiable and

J ′(Ω)(θ) = −

∫

D

j′(dΩ(x))
(

θ · n
)

(p∂Ω(x)) dx

or equivalently for a C2 domain Ω (by using a coarea formula)

J ′(Ω)(θ) = −

∫

∂Ω

(

θ · n
)

(y)

(

∫

ray(y)

j′(dΩ(x))
d−1
∏

i=1

(1 + dΩ(x)κi(y)) ds

)

dy

with κi the principal curvatures of ∂Ω, ray(y) = {x = y − s n(y)} and s the

curvilinear abcissa.

In numerical practice we approximate the Jacobian by 1.
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-IV- NUMERICAL RESULTS

☞ All the geometrical computations (skeleton, offset, projection, etc.) are

standard and very cheap (compared to the elasticity analysis).

☞ All our numerical examples are for compliance minimization (except

otherwise mentioned).

☞ Optimization: we use an augmented Lagrangian method.

☞ At convergence, the geometrical constraints are exactly satisfied.

☞ All results have bee obtained with our software developped in the finite

element code SYSTUS of ESI group.
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✞

✝

☎

✆
Maximum thickness (MBB, solution without constraint)
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✞

✝

☎

✆
Maximum thickness (solution with increasing constraint)
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✞

✝

☎

✆
Maximum thickness (3d MBB beam)

Geometrical constraints in topology optimization G. Allaire



33

✞

✝

☎

✆
Maximum thickness (3d Box)
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✞

✝

☎

✆
Minimum thickness (MBB beam)
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✞

✝

☎

✆
Minimum thickness (force inverter)
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✞

✝

☎

✆
Minimum thickness (3d)
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-V- MOLDING CONSTRAINTS

Parting surfaces Γi and draw directions di: castable (left), not castable (right).

Moldability condition: di · n(x) ≥ 0, ∀x ∈ Γi.

Geometrical constraints in topology optimization G. Allaire



38

✞

✝

☎

✆
Sufficient conditions for molding

Starting from a castable initial design:

Xia et al. (SMO 2010) proposed to project the velocity

θi(x) = λ(x)di, ∀x ∈ Γi.

Starting from a non-castable initial design:

we suggest the constraint

dΩ (x+ ξdi) ≥ 0 ∀x ∈ Γi, ∀ξ ∈ [0, dist(x, ∂D)] .
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No constraint (top), vertical draw direction (bottom).

Parting surface fixed at bottom (left) and free (right).
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Industrial test case (courtesy of Renault): no molding constraint (left), out of

plane draw direction (right).
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✄

✂

�

✁Conclusion

☞ Work still going on.

☞ Other penalizations of the geometrical constraints.

☞ Should we apply the constraints from the start or near the end ?

☞ What if we want to stay feasible at each iteration ?

☞ Handling several constraints simultaneously.

☞ Better optimization algorithm: sequential linear programming with trust

region.

Geometrical constraints in topology optimization G. Allaire


