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Grégoire ALLAIRE

CMAP, Ecole Polytechnique

Results obtained in collaboration with F. Jouve (LJLL, Paris 7),

G. Michailidis (formerly Renault and CMAP).

Oxbridge PDE conference, March, 23-24, 2015.

Geometrical constraints in topology optimization G. Allaire



2

CONTENTS

RODIN project

Ecole Polytechnique,

UPMC, INRIA,

Renault, EADS,

ESI group, etc.

1. Introduction.

2. Shape and topology optimization by the level set method.

3. Geometrical constraints.

4. Numerical results.

5. Molding constraints.

Geometrical constraints in topology optimization G. Allaire



3

-I- INTRODUCTION

Shape optimization : minimize an objective function over a set Uad of

admissibles shapes Ω (including possible constraints)

inf
Ω∈Uad

J(Ω)

The objective function is evaluated through a partial differential equation

(state equation)

J(Ω) =

∫

Ω

j(uΩ) dx

where uΩ is the solution of

PDE(uΩ) = 0 in Ω

Topology optimization : the optimal topology is unknown.
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✞

✝

☎

✆
The model of linear elasticity

A shape is an open set Ω ⊂ R
d with boundary ∂Ω = Γ ∪ ΓN ∪ ΓD.

For a given applied load g : ΓN → R
d, the displacement u : Ω → R

d is the

solution of


























− div (Ae(u)) = 0 in Ω

u = 0 on ΓD
(

Ae(u)
)

n = g on ΓN
(

Ae(u)
)

n = 0 on Γ

with the strain tensor e(u) = 1
2 (∇u+∇tu), the stress tensor σ = Ae(u), and

A an homogeneous isotropic elasticity tensor.

Typical objective function: the compliance

J(Ω) =

∫

ΓN

g · u dx,
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✞

✝

☎

✆
Example: the cantilever

Γ

Γ

Γ

Γ

N

D

D
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✞

✝

☎

✆
Admissible shapes

The shape optimization problem is

inf
Ω∈Uad

J(Ω),

where the set of admissible shapes is typically

Uad =

{

Ω ⊂ D open set such that ΓD

⋃

ΓN ⊂ ∂Ω and

∫

Ω

dx = V0

}

,

where D ⊂ R
d is a given “working domain” and V0 is a prescribed volume.

☞ The boundary subsets ΓD and ΓN are fixed. Only Γ is optimized (free

boundary).

☞ Existence of optimal shapes is a delicate issue (typically, one needs further

constraints in Uad).

☞ A nice numerical method is the level set algorithm since it allows for

topology changes.
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✞

✝

☎

✆
Industrial applications

☞ Tremendous progresses were achieved on academic research about shape

and topology optimization.

☞ There are several commercial softwares used by industry.

☞ But manufacturability of the optimal shapes is not always guaranteed.
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✞

✝

☎

✆
Goal of the present work

☞ We want to add geometrical constraints (for manufacturability), i.e.,

constraints on Ω, not on the state uΩ.

☞ The level set framework is well suited for this because it relies on the

distance function to the boundary.

☞ Issues to be addressed concerning geometrical constraints: modelling,

shape differentiation, numerical implementation.

Before that, let’s review the state of the art about the level set

method for shape and topology optimization.
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-II- LEVEL SET METHOD

A new numerical implementation of an old idea...

☞ Framework of Hadamard’s method of shape variations.

☞ Main tool: the level set method of Osher and Sethian (JCP 1988).

☞ Shape capturing algorithm.

☞ Fixed mesh: low computational cost.

☞ Early references: Sethian and Wiegmann (JCP 2000), Osher and Santosa

(JCP 2001), Allaire, Jouve and Toader (CRAS 2002, JCP 2004, CMAME

2005), Wang, Wang and Guo (CMAME 2003).
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Shape tracking Shape capturing
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✞

✝

☎

✆FRONT PROPAGATION BY LEVEL SET

Shape capturing method on a fixed mesh of the “working domain” D.

A shape Ω is parametrized by a level set function















ψ(x) = 0 ⇔ x ∈ ∂Ω ∩D

ψ(x) < 0 ⇔ x ∈ Ω

ψ(x) > 0 ⇔ x ∈ (D \ Ω)

Assume that the shape Ω(t) evolves in time t with a normal velocity V (t, x).

Then its motion is governed by the following Hamilton Jacobi equation

∂ψ

∂t
+ V |∇xψ| = 0 in D.
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✞

✝

☎

✆
Example of a level set function
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✞

✝

☎

✆
Advection velocity = shape gradient

The velocity V is deduced from the shape gradient of the objective function.

To compute this shape gradient we recall the well-known Hadamard’s method.

Let Ω0 be a reference domain. Shapes are parametrized by a vector field θ

Ω = ( Id + θ)Ω0 with θ ∈ C1(Rd;Rd).

x

Ω

x+  (x)θ

0
  d 0(Ι  +θ)Ω
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✞

✝

☎

✆
Shape derivative

Definition: the shape derivative of J(Ω) at Ω0 is the Fréchet differential of

θ → J
(

( Id + θ)Ω0

)

at 0.

Hadamard structure theorem: the shape derivative of J(Ω) can always be

written (in a distributional sense)

J ′(Ω0)(θ) =

∫

∂Ω0

θ(x) · n(x) j(x) ds

where j(x) is an integrand depending on the state u and an adjoint p.

We choose the velocity V = θ · n such that J ′(Ω0)(θ) ≤ 0.

Simplest choice: V = θ · n = −j but other ones are possible (including

regularization).
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✄

✂

�

✁SHAPE DERIVATIVE OF THE COMPLIANCE

J(Ω) =

∫

ΓN

g · uΩ ds =

∫

Ω

Ae(uΩ) · e(uΩ) dx,

where uΩ is the state variable in Ω.

J ′(Ω)(θ) = −

∫

Γ

Ae(uΩ) · e(uΩ) θ · nds,

Remarks:

1. self-adjoint problem (no adjoint state is required),

2. taking into account the volume constraint add a fixed Lagrange multiplier

λ−Ae(uΩ) · e(uΩ).
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✞

✝

☎

✆NUMERICAL ALGORITHM

1. Initialization of the level set function ψ0 (including holes).

2. Iteration until convergence for k ≥ 1:

(a) Compute the elastic displacement uk for the shape ψk.

Deduce the shape gradient = normal velocity = Vk

(b) Advect the shape with Vk (solving the Hamilton Jacobi equation) to

obtain a new shape ψk+1.

For numerical examples, see the web page:

http://www.cmap.polytechnique.fr/˜optopo/level en.html
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✞

✝

☎

✆
Examples of results with complex topologies
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-III- GEOMETRICAL CONSTRAINTS

We focus on thickness control because of

• manufacturability,

• uncertainty in the microscale (MEMS design),

• robust design (fatigue, buckling, etc.).

Existing works:

• Several approaches in the framework of the SIMP method to ensure

minimum length scale (Sigmund, Poulsen, Guest, etc.).

• In the level-set framework: Chen, Wang and Liu implictly control the

feature size by adding a ”line” energy term to the objective function ;

Alexandrov and Santosa kept a fixed topology by using offset sets.

• Many works in image processing.
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✞

✝

☎

✆
Signed-distance function

Definition. Let Ω ⊂ R
d be a bounded domain. The signed distance

function to Ω is the function R
d ∋ x 7→ dΩ(x) defined by :

dΩ(x) =















−d(x, ∂Ω) if x ∈ Ω

0 if x ∈ ∂Ω

d(x, ∂Ω) if x ∈ R
d \ Ω

where d(·, ∂Ω) is the usual Euclidean distance.
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✞

✝

☎

✆Constraint formulations

Maximum thickness.

Let dmax be the maximum allowed thickness. The constraint reads:

dΩ (x) ≥ −dmax/2 ∀x ∈ Ω

Minimum thickness

Let dmin be the minimum allowed thickness. The constraint reads:

dΩ (x− doffn (x)) ≤ 0 ∀x ∈ ∂Ω, ∀doff ∈ [0, dmin]

Remark: similar constraints for the thickness of holes.
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✞

✝

☎

✆Offset sets

For minimum thicknes we rely on the classical notion of offset sets of the

boundary of a shape, defined by

{x− doffn(x) such that x ∈ ∂Ω}
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✞

✝

☎

✆Caution with minimum thickness !

Writing a constraint for a single (large) value of doff does not work !

This is the reason why all values of doff between 0 and dmin are taken into

account.
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✞

✝

☎

✆
Quadratic penalty method

We reformulate the pointwise constraint into a global one denoted by P (Ω).

Maximum thickness

P (Ω) =

∫

Ω

[

(dΩ(x) + dmax/2)
−
]2

dx

Minimum thickness

P (Ω) =

∫

∂Ω

∫ dmin

0

[

(dΩ (x− doffn (x)))
+
]2

dx ddoff

where f+ = max (f, 0) and f− = min (f, 0).
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✞

✝

☎

✆
Property of the signed distance function

The signed distance function has a tent-like shape.
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✞

✝

☎

✆
Rays and skeleton of Ω

• The skeleton (or ridge) is made of the points x ∈ Ω where there are

multiple minimizers for

d(x, ∂Ω) = min
y∈∂Ω

‖x− y‖.

• Equivalently, the skeleton is the set of points where n = ∇dΩ is

discontinuous.

• Equivalently (Huygens principle) the skeleton is the geometric location of

centers of maximal disks.
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✞

✝

☎

✆
Rays and skeleton (Ctd.)

The ray issued from x ∈ ∂Ω is the integral curve of n = ∇dΩ.

The rays are straight lines because ẋ(t) = n(x(t)) implies t = dΩ(x(t)).
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✞

✝

☎

✆
Shape derivative of the signed-distance function

Lemma. Fix x ∈ Ω \ Skeleton. Define p∂Ω(x) the unique point on ∂Ω such

that

d(x, ∂Ω) = ‖x− p∂Ω(x)‖.

Then, the ”pointwise” shape derivative is

d′Ω(θ)(x) =
(

θ · n
)

(p∂Ω(x)) .

Remarks.

• The computation of the shape derivative of the signed-distance function is

classical (e.g. Delfour and Zolesio).

• The shape derivative d′Ω(θ) remains constant along the normal and rays

(but is discontinuous on the skeleton).
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Lemma. For a function j ∈ C1(R) define

J(Ω) =

∫

D

j(dΩ(x)) dx.

Then J is shape differentiable and

J ′(Ω)(θ) = −

∫

D

j′(dΩ(x))
(

θ · n
)

(p∂Ω(x)) dx

or equivalently for a C2 domain Ω (by using a coarea formula)

J ′(Ω)(θ) = −

∫

∂Ω

(

θ · n
)

(y)

(

∫

ray(y)

j′(dΩ(x))
d−1
∏

i=1

(1 + dΩ(x)κi(y)) ds

)

dy

with κi the principal curvatures of ∂Ω, ray(y) = {x = y − s n(y)} and s the

curvilinear abcissa.

In numerical practice we approximate the Jacobian by 1.
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-IV- NUMERICAL RESULTS

☞ All the geometrical computations (skeleton, offset, projection, etc.) are

standard and very cheap (compared to the elasticity analysis).

☞ All our numerical examples are for compliance minimization (except

otherwise mentioned).

☞ Optimization: we use an augmented Lagrangian method.

☞ At convergence, the geometrical constraints are exactly satisfied.

☞ All results have bee obtained with our software developped in the finite

element code SYSTUS of ESI group.
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✞

✝

☎

✆
Maximum thickness (MBB, solution without constraint)
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✞

✝

☎

✆
Maximum thickness (solution with increasing constraint)
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✞

✝

☎

✆
Maximum thickness (3d MBB beam)
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✞

✝

☎

✆
Maximum thickness (3d Box)
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✞

✝

☎

✆
Minimum thickness (MBB beam)
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✞

✝

☎

✆
Minimum thickness (force inverter)
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✞

✝

☎

✆
Minimum thickness (3d)
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-V- MOLDING CONSTRAINTS

Parting surfaces Γi and draw directions di: castable (left), not castable (right).

Moldability condition: di · n(x) ≥ 0, ∀x ∈ Γi.
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✞

✝

☎

✆
Sufficient conditions for molding

Starting from a castable initial design:

Xia et al. (SMO 2010) proposed to project the velocity

θi(x) = λ(x)di, ∀x ∈ Γi.

Starting from a non-castable initial design:

we suggest the constraint

dΩ (x+ ξdi) ≥ 0 ∀x ∈ Γi, ∀ξ ∈ [0, dist(x, ∂D)] .
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No constraint (top), vertical draw direction (bottom).

Parting surface fixed at bottom (left) and free (right).
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Industrial test case (courtesy of Renault): no molding constraint (left), out of

plane draw direction (right).
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✄

✂

�

✁Conclusion

☞ Work still going on.

☞ Other penalizations of the geometrical constraints.

☞ Should we apply the constraints from the start or near the end ?

☞ What if we want to stay feasible at each iteration ?

☞ Handling several constraints simultaneously.

☞ Better optimization algorithm: sequential linear programming with trust

region.
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