
Linear and non linear Calderón-Zygmund theories

Giuseppe Mingione

September 12, 2012

International conference on nonlinear PDE, Oxford

Giuseppe Mingione Linear and non linear Calderón-Zygmund theories



Classics

1 - The classics
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A model case

Let us consider the model case

−4u = µ in Rn

We are interested in

µ ∈ Lq ⇒ D2u ∈ Lq o ‖D2u‖Lq . ‖µ‖Lq

that holds when
1 < q <∞

otherwise failing when

q = 1,∞
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The classical approach

We use the fundamental solution

u(x) =

∫
G (x , y)µ(y) dy

where

G (x , y) ≈


|x − y |2−n if n > 2

− log |x − y | if n = 2

Differentiating twice yields

D2u(x) =

∫
K (x , y)µ(y) dy

where K (x , y) is CZ singular kernel
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Singular kernels - cancelations

T : µ 7→
∫

K (x , y)µ(y) dy

Well-posedness L2

‖K̂‖L∞ ≤ B ,

where K̂ denotes the Fourier transform K (·)
Hörmander’s cancelation condition∫

|x |≥2|y |
|K (x − y)− K (x)| dx ≤ B for every y ∈ Rn

then
T : Lq → Lq 1 < q <∞
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Fractional integrals suffice when below the critical case

Differentiating once the representation formula yields

|Du(x)| . I1(|µ|)(x)

where I1 is a fractional integral (Riesz potential)

Iβ(g)(x) :=

∫
g(y)

|x − y |n−β
dy β ∈ (0, n]

for which it holds

Iβ : Lq → L
nq

n−βq βq < n
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When size counts

Singular integrals need finer analysis as delicate cancellation
properties come into the play; for fractional integrals
analyzing the size of the kernel suffices
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Another linear case

When the right hand side is in divergence form

4u = div Du = div F

we have
‖Du‖Lq . ‖F‖Lq

Heuristic proof: “simplify div”

A subsequent approach via linear interpolation has been given
by Campanato and Stampacchia
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Gradient integrability

2 - The dual case
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Nonlinear, degenerate cases

We shall consider cases as

−div a(Du) = H in Ω

where a : RNn → RNn is a vector field and H is a distribution

the solution u : Ω→ RN is in a Sobolev space

and we are considering the standard ellipticity
assumptions {

|a(z)|+ |∂a(z)||z | ≤ L|z |p−1

ν|z |p−2|λ|2 ≤ 〈∂a(z)λ, λ〉
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Nonlinear, degenerate cases

Such assumptions are modeled on the p-Laplacean equation

−div (|Du|p−2Du) = H

when H = 0 the previous one is the Euler-Lagrange equation
of the functional

w 7→
∫

Ω
|Dw |p dx
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The setting

The classical distributional formulation reads as∫
Ω
〈a(Du),Dϕ〉 dx = 〈H, ϕ〉 ∀ ϕ ∈ C∞

Basic issues

When can we take ϕ ≈ u ?

Where to find u?

These are related questions; monotone operators theory tells
we can find a solutions in W 1,p when H belongs to the dual
W−1,p′

At this stage we are dealing with energy solutions ϕ ≈ u
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The setting

Weak formulations as∫
Ω
〈a(Du),Dϕ〉 dx = 〈H, ϕ〉 ∀ ϕ ∈ C∞

still make sense when u is not that integrable and H does not
necessarily belong to the dual; it suffices that Du ∈ Lp−1

and in fact it is possible to find solutions which do not belong
to W 1,p, these are called very weak solutions

In this first part I will deal with the case H belongs to the dual

H = −div (|F |p−2F ) , F ∈ Lq , q ≥ p
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The fundamentals

Theorem (Iwaniec, Studia Math. 83)

If u solves

div (|Du|p−2Du) = div (|F |p−2F ) in Rn

then
F ∈ Lq =⇒ Du ∈ Lq p ≤ q <∞

Theorem (DiBenedetto & Manfredi, Amer. J. Math. 93)

The previous result still holds in the case of systems; moreover

F ∈ BMO =⇒ Du ∈ BMO
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Subsequent contributions

Caffarelli & Peral (1998) give an important, yet maximal
function based, approach to the Lp estimates in the setting of
homogenization problems

Krylov (2005), in a series of papers, employs maximal
operators to obtain parabolic estimates

Subsequent contributions have been given by several
authors: Byun, Diening, Dong, Gutierrez, Iwaniec, Kim,
Kinnunen, Kristensen, L. Wang, Peral, Sbordone, Scheven,
Yao, Zhou
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More general operators

Iwaniec’s result extends

div a(Du) = div (|F |p−2F )

under the standard ellipticity conditions{
|a(z)|+ |∂a(z)||z | ≤ L|z |p−1

ν|z |p−2|λ|2 ≤ 〈∂a(z)λ, λ〉

and to systems of the type

div (g(|Du|)Du) = div (|F |p−2F )
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More general operators

Iwaniec’s does not extend to general systems of the type

div a(Du) = div (|F |p−2F )

with u : Ω→ RN and N > 1

Indeed, a fundamental result of Šverák & Yan claims the
existence of unbounded solutions for homogenous systems of
the type

div a(Du) = 0
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More general operators

Anyway something survives

Theorem (Kristensen & Min., ARMA 06)

For solutions
div a(Du) = div (|F |p−2F )

we have
F ∈ Lq =⇒ Du ∈ Lq p ≤ q <∞

whenever
p < q <

np

n − 2
+ δ

For more on the nature of δ see a basic work of Kristensen &
Melcher (Math. Z. 08)
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Anyway something survives

Theorem (Kristensen & Min., ARMA 06)

For solutions
div a(Du) = div (|F |p−2F )

we have
F ∈ Lq =⇒ Du ∈ Lq p ≤ q <∞

whenever
p < q <

np

n − 2
+ δ

This result turns out to be crucial in order to get certain
precise estimates for singular sets of solutions to vectorial
problems
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Parabolic equations

Theorem (Acerbi & Min., Duke Math. J. 07)

If u solves

ut − div (|Du|p−2Du) = div (|F |p−2F ) in Ω× (0,T )

and

p >
2n

n + 2

then
F ∈ Lqloc =⇒ Du ∈ Lqloc p ≤ q <∞

The lower bound

p >
2n

n + 2

is optimal
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Parabolic equations

Maximal operator approaches only work for isotropy cases
(elliptic or parabolic with p = 2)

Crucial use of DiBenedetto’s intrinsic geometries when
p 6= 2

Crucial use of DiBenedetto’s regularity estimates

The result extends to systems

The result extends to general equations of the type

ut − div a(Du) = div (|F |p−2F )
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An elementary approach

The method produces a purely pde proof – no tools from
harmonic analysis

New, interpolation free proof of classical Calderón-Zygmund
theory
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Elementary approach

For the result

4u = divF ⇒ ‖Du‖Lq . ‖F‖Lq ∀ q > 1

we can give a proof which only rests on the use of Vitali’s
covering theorem and on the mean value property of harmonic
functions

Giuseppe Mingione Linear and non linear Calderón-Zygmund theories



Open problems

In the case
4u = divF

we have
‖Du‖Lq . ‖F‖Lq ∀ q > 1

In the case of

div (|Du|p−2Du) = div (|F |p−2F )

the analog would write

p − 1 < q (instead of p ≤ q)

that remains a very difficult open problem
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Open problems

Observe that the interval q > p − 1 is the largest allowing for
a distributional formulation of the equation

div (|Du|p−2Du) = div (|F |p−2F )

i.e.∫
〈|Du|p−2Du,Dϕ〉 dx =

∫
〈|F |p−2F ,Dϕ〉 dx ∀ ϕ ∈ C∞

makes sense
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First answers

Theorem (Iwaniec & Sbordone, Crelle J. 93)

If u solves

div (|Du|p−2Du) = div (|F |p−2F ) in Rn

then
‖Du‖Lq . ‖F‖Lq if p − ε ≤ q <∞

where ε does not depend on the solution

Lewis (Comm. PDE 93) (with an alternative approach
working for higher order equations)

Kinnunen & Lewis (Duke Math. J. 2000, Ark. Math. 2002) in
the case of systems
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Measures

3 - Below the duality exponent - measure data
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Assumptions

Consider the standard ellipticity assumptions{
|a(z)|+ |∂a(z)||z | ≤ L|z |p−1

ν|z |p−2|λ|2 ≤ 〈∂a(z)λ, λ〉

for brevity we shall confine ourselves to the case

p ≥ 2

while optimal results are also available for the subquadratic
case
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Solvability

Consider the problem{
−div a(Du) = µ in Ω

u = 0 on ∂Ω

with |µ|(Ω) <∞
The linear case is a classical result of Littman &
Stampacchia & Weinberger (Ann. SNS Pisa 1963)
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SOLA (Boccardo & Gallouet, Dall’Aglio)

We solve the approximating problems{
−div a(Duk) = fk ∈ L∞ in Ω

uk = 0 on ∂Ω

fk → µ

and then k →∞

uk → u strongly in W 1,p−1
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More definitions

See the basic paper of Dal Maso, Murat, Orsina & Prignet
(Ann. Scu. Norm. Pisa 99) for more on existence and
definitions of solutions

Kilpeläinen, Kuusi & Tuhola-Kujanpää (Ann. IHP 12)
recently proved that all these definitions are equivalent in the
case of positive measures
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The “fundamental solution”

The problem{
−div(|Du|p−2Du) = δ in Ω

u = 0 on ∂Ω

has a unique SOLA

Gp(x) ≈


|x |

p−n
p−1 if p 6= n

− log |x | if n = p

that can be eventually used to test the optimality of the
results
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CZ theory for measure data problems: basic regularity

Theorem (Boccardo & Gallouët, JFA 89 - CPDE 92)

If µ is a measure then |Du|p−1 ∈Mn/(n−1)

If µ ∈ Lq con

1 < q <
np

np − n + p
= (p∗)′

then
|Du|p−1 ∈ Lnq/(n−q)

The case p = n is due to Dolzmann & Hungerbühler & Müller,
Crelle J. 00
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Basic questions

The equation is formally a second order one, so: Can we
expect differentiability of the gradient?

On the other hand in the case

4u = µ ∈ L1

in general we have
Du 6∈W 1,1

Giuseppe Mingione Linear and non linear Calderón-Zygmund theories



Basic questions

The equation is formally a second order one, so: Can we
expect differentiability of the gradient?

On the other hand in the case

4u = µ ∈ L1

in general we have
Du 6∈W 1,1

Giuseppe Mingione Linear and non linear Calderón-Zygmund theories



Fractional derivatives

Fractional Sobolev spaces

We say that v ∈W s,γ with

0 < s < 1 γ ≥ 1

iff ∫ ∫
|v(x)− v(y)|γ

|x − y |n+sγ
dx dy <∞

Intuitively∫ ∫
|v(x)− v(y)|γ

|x − y |n+sγ
dx dy ≈

∫
|Dsv(x)|γ dx

Giuseppe Mingione Linear and non linear Calderón-Zygmund theories



CZ theory for measure data problems: maximal regularity

Theorem (Min., Ann. SNS Pisa 2007)

If u solves
−div a(Du) = µ with p = 2

then
Du ∈W 1−ε,1 ∀ ε > 0
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When p > 2

Forecasting.... We recall that

1

|x |β
∈W s,γ(B)⇐⇒ β <

n

γ
− s

We apply this fact to the fundamental solution

Gp ≈
1

|x |
n−p
p−1

|DGp| ≈
1

|x |
n−1
p−1

with the natural choice γ = p − 1, we obtain

s <
1

p − 1

therefore we would expect

Du ∈W s,p−1 ∀ s <
1

p − 1
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Indeed....

Theorem (Min., Ann. SNS Pisa 2007)

If u solves
−div a(Du) = µ with p ≥ 2

then
Du ∈W

1−ε
p−1

,p−1 ∀ ε > 0

Observe that since we are dealing with the case p ≥ 2 then

1

p − 1
≤ 1
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Indeed....

Theorem (Min., Ann. SNS Pisa 2007)

If u solves
−div a(Du) = µ with p ≥ 2

then
Du ∈W

1−ε
p−1

,p−1 ∀ ε > 0

Additional results are in Min., Math Ann. 2010 - The parabolic
case has been treated by Baroni & Habermann (JDE 2012)
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The result is optimal

Fractional Sobolev embedding gives

W σ,q ↪→ L
nq

n−σq σq < n

therefore assuming

Du ∈W
1

p−1
,p−1

would yield

Du ∈ L
n(p−1)
n−1

that does not hold for the fundamental solution
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Potentials

4 - Linear and nonlinear potentials
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Back to the classics

For the model case

−4u = µ in Rn

it hold

|u(x)| .
∫
Rn

d |µ|(y)

|x − y |n−2
= I2(|µ|)(x)

and

|Du(x)| .
∫
Rn

d |µ|(y)

|x − y |n−1
= I1(|µ|)(x)
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The truncated Riesz potential

A version suited to bounded domains

Iµβ(x ,R) :=

∫ R

0

µ(B(x , %))

%n−β
d%

%
β ∈ (0, n]

then

Iµβ(x ,R).
∫
BR(x)

dµ(y)

|x − y |n−β

= Iβ(µxB(x ,R))(x) ≤ Iβ(µ)(x)

for all non-negative measures
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Looking for nonlinear analogs

Take nonlinear equations of the type

−div a(Du) = µ

as before

and for instance degenerate cases as

−div (|Du|p−2Du) = µ

recalling that we are considering p ≥ 2
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New potentials are needed when p 6= 2

Are the estimates

|u(x)| . I2(|µ|)(x) e |Du(x)| . I1(|µ|)(x)

valid for solutions to −div (|Du|p−2Du) = µ?

Obviously not, as

−div (|Du|p−2Du) = µ =⇒ −div (|D(γu)|p−2D(γu)) = γp−1µ

so that letting γ → 0 in

|u(x)| . γp−2I2(|µ|)(x)

would yield
u ≡ 0
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Nonlinear Wolff potentials

The nonlinear Wolff potential is defined by

Wµ
β,p(x ,R) :=

∫ R

0

(
|µ|(B(x , %))

%n−βp

)1/(p−1) d%

%

with
β ∈ (0, n/p]

when p = 2 it coincides with the Riesz

Iµ|β|(x ,R) :=

∫ R

0

|µ|(B(x , %))

%n−β
d%

%
β ∈ (0, n]

Nonlinear Wolff potentials play a key role in nonlinear
potential theory (similar to Riesz’s in linear potential theory)
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The first nonlinear potential estimate

Theorem (Kilpeläinen-Malý, Acta Math. 94)

If u solves
−div (|Du|p−2Du) = µ

then

|u(x)| . Wµ
1,p(x ,R) +

(
−
∫
B(x ,R)

|u|p−1 dy

)1/(p−1)

holds for a.e. x

where

Wµ
1,p(x ,R) :=

∫ R

0

(
|µ|(B(x , %))

%n−p

)1/(p−1) d%

%

For p = 2 we are back to the Riesz potential Wµ
1,p = Iµ2 - the

above estimate is non-trivial already in this situation
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The first nonlinear potential estimate

A new and important approach to the previous estimate has
been given by Trudinger & Wang (Amer. J. Math. 2002).
The result extends to the general subelliptic setting by their
method
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Optimal integrability properties of u now follow as a
corollary

Indeed

µ ∈ Lq =⇒Wµ
β,p ∈ L

nq(p−1)
n−qpβ q ∈ (1, n)

and more in general estimates in rearrangement invariant
function spaces

This property follows by another pointwise estimate∫ ∞
0

(
|µ|(B(x , %))

%n−βp

)1/(p−1) d%

%
. Iβ

{
[Iβ(|µ|)]1/(p−1)

}
(x)

The quantity in the right-hand side is usually called
Havin-Mazya potential
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A first gradient potential estimate

Theorem (Min., JEMS 2011)

When p = 2, if u solves

−div a(Du) = µ

then

|Du(x)| . I
|µ|
1 (x ,R) +−

∫
B(x ,R)

|Du| dy

holds for a.e. x

For solutions in W 1,1(RN) we have

|Du(x)| .
∫
Rn

d |µ|(y)

|x − y |n−1
= I1(|µ|)(x)
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A gradient estimate with nonlinear potentials

Theorem (Duzaar & Min., Amer. J. Math. 2011)

If u solves
−div (|Du|p−2Du) = µ

then

|Du(x)| . Wµ
1/p,p(x ,R) +−

∫
B(x ,R)

|Du| dy

holds for a.e. x

that actually means that

|Du(x)| .
∫ R

0

(
|µ|(B(x , %))

%n−1

)1/(p−1) d%

%
+−
∫
B(x ,R)

|Du| dy
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New viewpoint - Let’s twist!!!

Consider again
−div (|Du|p−2Du) = µ

Being nonlinear in the gradient, the equation is still linear in
|Du|p−2Du whose norm is |Du|p−1

Some brave thinking leads to conjecture the existence of a
linear estimate for |Du|p−1

Also observe that a similar argument is not possible if we
think of u
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New viewpoint - Let’s twist!!!

Consider
−div v = µ

with
v = |Du|p−2Du
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Indeed

Theorem (Kuusi & Min., CRAS 2011 + ARMA 2012)

If u solves
−div (|Du|p−2Du) = µ

then

|Du(x)|p−1 . I
|µ|
1 (x ,R) +

(
−
∫
B(x ,R)

|Du| dy

)p−1

holds for a.e. x

The theorem still holds for general equations of the type
−div a(Du) = µ
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General operators

Theorem (Kuusi & Min., CRAS 2011 + ARMA 2012)

If u solves
−div a(x ,Du) = µ

and
x 7→ a(x , ·) is Dini-continuous

then

|Du(x)|p−1 . I
|µ|
1 (x ,R) +

(
−
∫
B(x ,R)

|Du| dy

)p−1

holds for a.e. x

The Dini continuity of coefficients is optimal
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Same estimates for linear and nonlinear equations

Theorem (Kuusi & Min., CRAS 2011 + ARMA 2012)

If u solves
−div (|Du|p−2Du) = µ in Rn

then

|Du(x)|p−1 .
∫
Rn

d |µ|(y)

|x − y |n−1
= I1(|µ|)(x)

holds for a.e. x
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Unified approach to gradient regularity

For the model case equation div (|Du|p−2Du) = µ the
previous estimate implies for instance the local estimates
included in almost all the papers devoted to the subject

Moreover, the borderline cases which appeared as open
problems in some of the above papers papers now follow
as a corollary
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Lipschitz regularity and beyond

Theorem (Kuusi & Min., CRAS 2011 + ARMA 2012)

If u solves
−div (|Du|p−2Du) = µ

and
lim
R→0

I
|µ|
1 (x ,R) = 0 uniformly w.r.t. x

then
Du is continuous

There’s no difference between Laplacean and p-Laplacean up to
C 1,0-regularity
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The general continuity criterion

Theorem (Kuusi & Min., CRAS 2011 + ARMA 2012)

If u solves
−div a(x ,Du) = µ

and
lim
R→0

I
|µ|
1 (x ,R) = 0 uniformly w.r.t. x

then
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The general continuity criterion

Corollary

If u solves
−div a(x ,Du) = µ

and
µ ∈ L(n, 1)

that is ∫ ∞
0
|{x ∈ Ω : |µ(x)| > λ}|1/ndλ <∞

then
Du is continuous
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Developments

Parabolic estimates for the evolutionary p-Laplacean equation

ut − div (|Du|p−2Du) = µ

they use intrinsic potentials built following intrinsic
geometries. This is joint work with T. Kuusi

Suitable potential estimates for fully nonlinear equations

F (x ,D2u) = f

using suitably modified potentials according to the ABP
principle. This is joint work with P. Daskalopoulos & T.
Kuusi
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Fully nonlinear equations

Theorem (Daskalopoulos & Kuusi & Min., Preprint 2012)

Let u be an Lp-viscosity solution to

F (D2u) = µ

with ne < p < n. Then if µ ∈ L(n, 1) that is∫ ∞
0
|{x ∈ Ω : |µ(x)| > λ}|1/ndλ <∞

then Du is continuous

This provides the sharp borderline case of the celebrated work
of Caffarelli (Ann. Math. 89)

More results are available for fully nonlinear, and concerning
the sharp gradient integrability
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Thank you – with a funny image I got from a PMS
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