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Goal of the Talk

When deterministic statements about existence, uniqueness and stability of
solutions to certain evolution equations are not easy to prove or not available
all together, we turn to a more probabilistic point of view.

In this talk we will distinguish between equations that can be viewed as infinite
dimension Hamiltonian systems, for example:

Certain Schrödingier equations on compact manifolds
Periodic KdV equations
Certain wave equations on bounded domains

and those that do not enjoy this strong property.

We will start by
Explaining what we mean with almost sure well-posedness
Explaining why this approach improves in some sense the regularity of
the problems at hand.
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The General Set Up
Consider the initial value problem written in general form:

(GIVP)
{

ut + P(D)u = F (u) x ∈ M, t > 0
u(x ,0) = u0(x),

where M is a manifold without boundaries, P(D) is a certain differential
operator, F (u) is the nonlinear part of the equation, u0 is the initial datum. Let
us assume that u0 belongs to a certain Banach space of functions X s, with
derivatives of order s.

Well-posedness (local) for us means that:

Definition
For any u0 ∈ X s there exist T > 0 and a unique solution u to (GIVP) in
C([0,T ],X s) that is also stable in the appropriate topology.

Remark
If s is small, or if F (u) is highly non linear, or if M is of high dimension or not
flat, proving well-posedness could be very difficult and in some cases not
even true. Counterexamples can be constructed!
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Happy with Less!

One could think about introducing a probability measure µ in the space of
initial data X s that would give the following weaker version of well-posedness:

Definition
There exists Y s ⊂ X s, with µ(Y s) = 1 and such that for any u0 ∈ Y s there
exist T > 0 and a unique solution u to (GIVP) in tC([0,T ],X s) that is also
stable in the appropriate topology.

When this can be proved we will be talking about Almost Sure
Well-posedness.

Remark
In what follows we will assume that M = Td , the torus of dimension d and that
X s = Hs, the usual L2 based Sobolev space, but one can be much more
general.

Gigliola Staffilani (MIT) a.s. well-posedness 10-13 September, 2012 5 / 38



An Explicit Example of µ
Let f ∈ Hs(Td ) and let (an)n∈Zd be its Fourier coefficients. Let l(ω)n∈Zd be
independent identically distributed standard Gaussian or Bernulli random
variables on a probability space (Ω,F ,P). We then defined the randomization
of f to be

fω(x) =
∑
n∈Zd

anln(ω)eix·n.

The gain in using a randomization is in the fact that the randomized function
gains regularity, as the following proposition shows:

Proposition
For p ≥ 2

‖fω‖Lp(Td ) ≤ C‖an‖l2 ∼ ‖f‖L2(Td )

almost surely.

Remark
One should at the same time remark, that the gain in regularity is only with
respect to the exponent p not s, the order of derivative, see for example N.
Burq and N. Tzvetkov.
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Equations in Hamiltonian form
Consider the following equations with associated Hamiltonians:

The Nonlinear Schrödinger equation in Td

i∂tu + ∆u + λ|u|pu = 0 and H(u) =
1
2

∫
|∇u|2 dx − λ

p + 2

∫
|u|p+2 dx

for p > 1 and λ = ±1.

The KdV equation in T

∂tu + ∂xxxu + λ∂x (uk+1) = 0 and H(u) =
1
2

∫
|∂xu|2 dx − λ

k + 2

∫
uk+2 dx

for k ∈ N and λ = ±1.

The Derivative NLS equation in T

i∂tu + ∂xxu + λ∂x (|u|2u) = 0

with Hamiltonian

H(u) =
1
2

∫
|∂xu|2 dx +

3
4

Im
∫

u2ū∂x ū dx − λ

4

∫
u6 dx

for λ = ±1.
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The NLW equation in a bounded domain

∂ttu −∆u + λuk = 0 and H(u) =
1
2

∫
[|∂tu|2 + |∇u|2] dx − λ

k + 1

∫
uk+1 dx

for k ∈ N and λ = ±1.

If one rewrites these equation for the Fourier coefficients (an) of u instead of u
itself, then one obtains infinite dimension Hamiltonian systems.

For these systems one may hope to make sense of a very special kind of
measure in the set of the initial data: the Gibbs measure and use it to show
well-posedness in very low regularity regimes.

This method goes back to J. L. Lebowitz, H. A. Rose, and E. R. Speer and
Zhidkov, then continued by J. Bourgain for NLS, KdV etc, and then more
recently by N. Burq and N. Tzvetkov for the NLW, T. Oh for KdV type systems,
A. Nahmod, T. Oh, L. Rey-Bellet, G.S for DNLS (see also L. Thomann and N.
Tzvetkov).
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The Gibbs measure: finite dimension

Hamilton’s equations of motion have the antisymmetric form

q̇i =
∂H(p,q)

∂pi
, ṗi = −∂H(p,q)

∂qi

the Hamiltonian H(p,q) being conserved.

By defining y := (q1, . . . ,qk ,p1, . . . ,pk )T ∈ R2k (2k = d) we can rewrite the
system in the compact form

dy
dt

= J∇H(y), J =

[
0 I
−I 0

]
.

As a consequence of Liouville’s Theorem the Lebesgue measure ν on R2k is
invariant under the Hamiltonian flow Φt :

ν(Φt (A)) = ν(A)

for all measurable sets A.
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A more interesting measure is the Gibbs measure. We have in fact:

Theorem (Invariance of Gibbs measures)
Assume that Φt is the flow generated by the Hamiltonian system above. Then
the Gibbs measures defined as

dµ := e−βH(p,q)
d∏

i=1

dpi dqi

with β > 0, are invariant under the flow Φt .

The proof is trivial since from conservation of the Hamiltonian H the functions
e−βH(p,q) remain constant, while, thanks to Liouville’s Theorem the volume
measure dν =

∏d
i=1 dpi dqi remains invariant as well.
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The Gibbs measure: infinite dimension
As mentioned before in more general terms, if we consider for example the
Cauchy problem {

(i∂t + ∆)u = −|u|4u
u(0, x) = u0(x), where x ∈ T.

with Hamiltonian

H(u(t)) =
1
2

∫
|∇u|2(x , t) dx +

1
6

∫
|u(t , x)|6 dx .

One can rewrite the Cauchy problem as

u̇ = i
∂H(u, ū)

∂ū
and if we think of u as the infinite dimension vector given by its Fourier
coefficients (û(n))n∈Z = (an + ibn)n∈Z, then this becomes an infinite dimension
Hamiltonian system for the vector (an(t),bn(t))n∈Z.
Lebowitz, Rose and Speer considered the Gibbs measures formally given by

“dµ = exp (−βH(u))
∏
x∈T

du(x)”

for β > 0 and showed that µ is a well-defined probability measure on Hs(T)
for any s < 1

2 .
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The Guassian Measure
How does one make sense of the Gibbs measure introduced above? We
need to go through the Gaussian measure.

For the example we are considering note that the quantity

H(u) +
1
2

∫
|u|2(x) dx

is conserved. Then the best way to make sense of the Gibbs measure µ is by
writing it as

dµ = exp
(
−1

6

∫
|u|6 dx

)
exp

(
−1

2

∫
(|ux |2 + |u|2) dx

)∏
x∈T

du(x).

In this expression dρ = exp
(
− 1

2

∫
(|ux |2 + |u|2) dx

)∏
x∈T du(x) is the

Gaussian measure and

dµ
dρ

= exp
(
−1

6

∫
|u|6 dx

)
,

corresponding to the nonlinear term of the Hamiltonian, is understood as the
Radon-Nikodym derivative of µ with respect to ρ.
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On the other hand the Gaussian measure ρ is the weak limit of the finite
dimensional Gaussian measures

dρN = exp
(
− 1

2

∑
|n|≤N

(1 + |n|2)|ûn|2
) ∏
|n|≤N

dandbn.

Remark
The measure ρN above can be regarded as the induced probability measure
on R2N+2 under the map

ω 7−→
{

ln(ω)√
1 + |n|2

}
|n|≤N

.

where ln(ω), 0 ≤ |n| ≤ N, are independent standard complex Gaussian
random variables on a probability space (Ω,F ,P) ( ûn = ln√

1+|n|2
). In a similar

manner, we can view ρ as the induced probability measure under the map

ω 7→
{

ln√
1+|n|2

}
n∈Z

.
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Invariance of the Gibbs Measure and Almost Sure
Global Well-posedness
Using the setting recalled above Bourgain proved

Theorem

Consider the Cauchy problem{
(i∂t + ∆)u = ±|u|4u

u(0, x) = u0(x), where x ∈ T.

The Gibbs measure µ is well defined in Hs, 0 ≤ s < 1/2 and there exists
Ω ⊂ Hs, such that µ(Ω) = 1, where the Cauchy problem is globally well-posed
in Ω. Moreover µ is invariant.

Remark
To be precise, for the focusing case, one needs to impose the restriction that
the mass (L2 norm) is small.
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Strength and Weaknesses of the Gibbs Measure

Why is the use of the Gibbs measure more effective?

I Because failure to show global existence with other methods (see Bourgain’s
high-low method or the I-method) might come from certain ‘exceptional’
initial data set, and the virtue of the Gibbs measure is that it does not see
that exceptional set.

I The invariance of the Gibbs measure, just like the usual conserved
quantities, can be used to control the growth in time of those solutions in its
support and extend the local in time solutions to global ones almost surely.

What are the limitations of the Gibbs measure?

I The difficulty in this approach lies in the actual construction of the associated
Gibbs measure and in showing both its invariance under the flow and the
almost sure global well-posedness.

I In higher dimensions the Gibbs measure lives in very rough spaces where
key estimates are not available.

I If the equation is not Hamiltonian things are not clear.
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Make Do with Less
N. Burq and N. Tzvetkov for certain supercritical NLW and J. Colliander and T.
Oh for the 1D cubic NLS below L2, abandoned the use of the Gibbs measure
and only used the randomization of the initial data to obtain local, and then
global, almost sure well-posedness.

The main idea here goes as follows: Consider again

(GIVP)
{

ut + P(D)u = F (u) x ∈ M, t > 0
u(x ,0) = u0(x),

and assume that u0 ∈ X s, with s small.
Randomize the initial datum as proposed above, call it uω0 .
Assume vω is the solution of the associated linear problem with initial
datum uω0 .
Use the fact that vω has better Lp estimates than u0 almost surely to show
that w = u − vω solves a difference equation that lives in a smoother
space than X s. Obtain for w a deterministic local well-posedness.
Use energy method (N. Burq and N. Tzvetkov) or high-low method of
Bourgain (J. Colliander and T. Oh) to pass from local to global.
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Some Recent Results

Following this line of work we would like to report two recent results

For any fixed interval of time [0,T ]:
I The 2d periodic Navier-Stokes Cauchy problem is almost surely globally

well-posed in [0,T ] for divergence free data in Hs, s > −1/2.
I The 3d periodic Navier-Stokes Cauchy problem almost surely has weak

solutions in [0,T ] for divergence free data in Hs, s > −1/3.

(Joint work with A. Nahmod and N. Pavlovic.)

The 3d periodic quintic NLS Cauchy problem is almost surely locally
well-posed in Hs, s > 1− σ, for some σ > 0. (Note that s = 1 is critical!)

(Joint work with A. Nahmod.)

In the rest of the lecture will be devoted to the first result.
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The Navier-Stokes Equations
Consider a viscous, homogenous, incompressible fluid with velocity ~u on
M = Rd or Td , d=2, 3 and which is not subject to any external force. Then
the initial value problem for the Navier-Stokes equations is given by

(NSEp)


~ut + ~v · ∇~u = −∇p + ν∆~u; x ∈ M, t > 0
∇ · ~u = 0
~u(x ,0) = ~f (x),

where 0 < ν =inverse Reynols number (non-dim. viscosity);
~u : R+ ×M → Rd , p = p(x , t) ∈ R and ~f : M → Rd is divergence free.

For smooth solutions it is well known that the pressure term p can be
eliminated via Leray-Hopf projections and view (NSEp) as an evolution
equation of ~u alone1,

the mean of ~u is easily seen to be an invariant of the flow (conservation of
momentum) so can reduce to the case of mean zero ~f .

1Although understanding the pressure term might be important.
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Then the incompressible Navier-Stokes equations (NSEp) (assume ν = 1)
can be expressed as

(NSE)


~ut = ∆~u − P∇ · (~u ⊗ ~u); x ∈ Ω, t > 0
∇ · ~u = 0
~u(x ,0) = ~f (x),

where P is the Leray-Hopf projection operator into divergence free vector
fields given via

P~h = ~h −∇ 1
∆

(∇ · ~h) = (I + ~R ⊗ ~R)~h

(~R = Riesz transforms vector) and ~f is mean zero and divergence free.

By Duhamel’s formula we have

(NSEi) ~u(t) = et∆~f +

∫ t

0
e(t−s)∆P∇ · (~u ⊗ ~u) ds

In fact, under suitable general conditions on ~u the three formulations
(NSEp), (NSE) and (NSEi) can be shown to be equivalent (weak
solutions, mild solutions, integral solutions. Work by Leray, Browder,
Kato, Lemarie, Furioli, Lemarie and Terraneo, and others. )
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Recall if the velocity vector field ~u(x , t) solves the Navier-Stokes
equations in Rd or Td then ~uλ(x , t) with

~uλ(x , t) = λ~u(λx , λ2t),

is also a solution to the system (NSE) for the initial data

~fλ = λ~f (λx) .

In particular,

‖~fλ‖Ḣsc = ‖~f‖Ḣsc , sc =
d
2
− 1.

The spaces which are invariant under such a scaling are called critical
spaces for Navier-Stokes. Examples:

Ḣ
d
2−1 ↪→ Ld ↪→ Ḃ

−1+ d
p

p,∞ ↪→ BMO−1 (1 < p <∞).

v ∈ BMO−1 iff ∃ hi ∈ BMO such that v =
∑
∂ihi (Koch-Tataru)
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Classical solutions to the (NSE) satisfy the decay of energy which can be
expressed as:

‖u(x , t)‖2
L2 +

∫ t

0
‖∇u(x , τ)‖2

L2 dτ = ‖u(x ,0)‖2
L2 .

When d = 2: the energy ‖u(x , t)‖L2 , which is globally controlled, is
exactly the scaling invariant Ḣsc = L2-norm. In this case the equations
are said to be critical. Classical global solutions have been known to
exist; see Ladyzhenskaya (1969).

When d = 3: the global well-posedness/regularity problem of (NSE) is a
long standing open question!

I The energy ‖u(x , t)‖L2 is at the super-critical level with respect to the scaling
invariant Ḣ

1
2 -norm, and hence the Navier-Stokes equations are said to be

super-critical
I The lack of a known bound for the Ḣ

1
2 contributes in keeping the large data

global well-posedness question for the initial value problem (NSE) still open.
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Periodic Navier-Stokes Equation Below L2

We consider the periodic Navier-Stokes problem (NSE)

(NSE)


~ut = ∆~u − P∇ · (~u ⊗ ~u); x ∈ Td t > 0
∇ · ~u = 0
~u(x ,0) = ~f (x),

where d = 2,3 and ~f is divergence free and mean zero and P is the Leray
projection into divergence free vector fields.

We address the question of long time existence of weak solutions for
super-critical randomized large initial data both in d = 2, 3.
For d = 2 we address uniqueness as well.
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Navier-Stokes: A Road Map of the Argument

We start with an initial data ~f ∈ H−α, α > 0, hence supercritical. Assume
{~an} are the Fourier coefficients of ~f .

Randomizing ~f means that we replace {~an} by {ln(ω)~an} , where {ln(ω)}
are independent random variables, and we take its Fourier series ~fω as
the new randomized initial data.

We seek a solution to the initial value problem (NSE) in the form
~u = et∆~fω + ~w and identify the difference equation that ~w should satisfy.

The heat flow of the randomized data gives almost surely improved Lp

bounds. These bounds yield improved nonlinear estimates arising in the
analysis of the difference equation for ~w almost surely.

We revisit the proof of equivalence between the initial value problem for
the difference equation and the integral formulation of it in our context.
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We prove a priori energy estimates for ~w . The integral equation
formulation is used near time zero and the other one away from zero.

A construction of a global weak solution to the difference equation via a
Galerkin type method is thus possible.

We prove uniqueness of weak solutions when d = 2. Our proof is done
‘from scratch’ for the difference equation (in spirit of
Ladyzhenskaya-Prodi-Serrin condition).

Put all ingredients together to conclude.

Remark
We should immediately notice that although in our paper we use improved
properties for et∆~fω, one can show that already ~fω belongs to certain critical
Besov spaces for which Gallagher-Planchon already proved in 2d global
well-posedness. On the other hand while their proof is based on a
combination of the high-low argument of Bourgain and the H. Kock-Tataru
small BMO−1 data result, ours is much more self contained and gives more
precise energy estimate. Moreover our existence result extends to 3d, as
mentioned.
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Now the Details

We start by recolling that here we are dealing with divergence free initial data,
so we need to pick a randomization that maintains this property:

Definition [Diagonal randomization]
Let (ln(ω))n∈Zd be a sequence of of real, independent, random variables on a
probability space (Ω,A,p) For ~f ∈ (Hs(Td ))d , let (ai

n), i = 1,2, . . . ,d , be its
Fourier coefficients. We introduce the map from (Ω,A) to (Hs(Td ))d equipped
with the Borel sigma algebra, defined by

(DR) ω −→ ~fω, ~fω(x) =

∑
n∈Zd

ln(ω)a1
nen(x), . . . ,

∑
n∈Zd

ln(ω)ad
n en(x)

 ,

where en(x) = ein·x and call such a map randomization.
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Remarks

The map (DR) is measurable and ~fω ∈ L2(Ω; (Hs(Td ))d ), is an
(Hs(Td ))d -valued random variable.

The diagonal randomization defined in (DR) commutes with the Leray
projection P.

No Hs regularization ‖~fω‖Hs ∼ ‖~f‖Hs (Burq-Tzvetkov).

But randomization gives improved Lp estimates (almost surely).
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Main Results
Theorem [Existence and Uniqueness in 2D]

Fix T > 0, 0 < α < 1
2 and let ~f ∈ (H−α(T2))2, ∇ ·~f = 0 and of mean zero.

Then there exists a set Σ ⊂ Ω of probability 1 such that for any ω ∈ Σ the
initial value problem (NSE) with datum ~fω has a unique global weak solution ~u
of the form

~u = ~u~fω + ~w

where ~u~fω = et∆~fω and ~w ∈ L∞([0,T ]; (L2(T2))2) ∩ L2([0,T ]; (Ḣ1(T2))2).

Theorem [Existence in 3D]

Fix T > 0, 0 < α < 1
3 and let ~f ∈ (H−α(T3))3, ∇ ·~f = 0, and of mean zero.

Then there exists a set Σ ⊂ Ω of probability 1 such that for any ω ∈ Σ the initial
value problem (NSE) with datum ~fω has a global weak solution ~u of the form

~u = ~u~fω + ~w ,

where ~u~fω = et∆~fω and ~w ∈ L∞([0,T ]; (L2(T3))3) ∩ L2([0,T ]; (Ḣ1(T3))3).

Gigliola Staffilani (MIT) a.s. well-posedness 10-13 September, 2012 27 / 38



Some Previous Results:

This approach has been already applied in the context of the Navier-Stokes to
obtain:

Local in time solutions to the corresponding integral equation for
randomized initial data in L2(T3) by Zhang and Fang (2011) and by Deng
and Cui (2011). Also global in time solutions to the corresponding
integral equation for randomized small initial data.

Deng and Cui (2011) obtained local in time solutions to the
corresponding integral equation for randomized initial data in Hs(Td ), for
d = 2,3 with −1 < s < 0.
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Free Evolution of the Randomized Data

Deterministic estimates.
For 0 < α < 1, k ≥ 0 integer and ~u~fω = et∆~fω, ~fω ∈ (H−α(Td ))d , we have:

‖∇k~u~fω (·, t)‖L2
x

. (1 + t−
α+k

2 ) ‖~f‖H−α .

‖∇k~u~fω‖L∞x .
(

max{t−1, t−(k+α+ d
2 )}
) 1

2 ‖~f‖H−α .

Probabilistic estimates.
Let T > 0 and α ≥ 0. Let r ≥ p ≥ q ≥ 2, σ ≥ 0 and γ ∈ R be such that
(σ + α− 2γ)q < 2. Then there exists CT > 0 such that for every
~f ∈ (H−α(Td ))d

‖tγ(−∆)
σ
2 et∆~fω‖Lr (Ω;Lq([0,T ];Lp

x ) ≤ CT ‖~f‖H−α ,

where CT may depend also on p,q, r , σ, γ and α.
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Probabilistic estimates (cont.)
Moreover, if we set

E
λ,T ,~f ,σ,p = {ω ∈ Ω : ‖tγ(−∆)

σ
2 et∆~fω‖Lq([0,T ];Lp

x ) ≥ λ},

then there exists c1, c2 > 0 such that for every λ > 0 and for every
~f ∈ (H−α(Td ))d

P(E
λ,T ,~f ,σ,p) ≤ c1 exp

[
−c2

λ2

CT‖~f‖2
H−α

]
.
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Difference Equation. Equivalent Formulations

Let

H = the closure of {~f ∈ (C∞(Td ))d | ∇ ·~f = 0} in (L2(Td ))d ,

V = the closure of {~f ∈ (C∞(Td ))d | ∇ ·~f = 0} in (Ḣ1(Td ))d ,

V ′ = the dual of V .

and recall
~u − ~u~fω =: ~w ,

We consider two formulations of the initial value problem for the difference
equation that ~w solves and re-prove in our context an equivalence lemma,
which is similar to the version for the Navier-Stokes equations themselves
(Lemarie, Furioli-Lemarie, Terraneo).
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The Equivalence Lemma
Let T > 0. Assume that ∇ · ~g = 0, ‖~g(x , t)‖L2 . (1 + 1

t
α
2

) and{
‖~g‖L4([0,T ],L4

x ) ≤ C, if d = 2
‖~g‖L6([0,T ],L6

x ) ≤ C, if d = 3,

for some C > 0. Then the following statements are equivalent.
(DE) ~w is a weak solution to the initial value problem ∂t ~w = ∆~w − P∇(~w ⊗ ~w) + c1[P∇(~w ⊗ ~g) + P∇(~g ⊗ ~w)] + c2P∇(~g ⊗ ~g)

∇ · ~w = 0,
~w(x ,0) = 0.

(IE) The function ~w ∈ L∞((0,T ); H) ∩ L2((0,T ),V ), solves

~w(t) = −
∫ t

0
e(t−s)∆∇~F (x , s) ds, where

~F (x , s) = −P(~w ⊗ ~w) + c1[P(~w ⊗ ~g) + P(~g ⊗ ~w)] + c2P(~g ⊗ ~g).
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The Importance of the Equivalence Lemma

The Equivalence Lemma stated above is fundamental in our argument since it
will be used heavily in proving:

The Energy Estimate for ~w . Near zero, where g is singular, we use a
continuity augment while away from zero we use the usual argument for
NS.

The Proof of the existence of weak solutions via the energy estimate for
~w in conjunction with Galerkin type skeme.

See also the work by T. Tao (07’).
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Energy Estimates for the Difference Equation

E(~w)(t) = ‖~w(t)‖2
L2 + c

∫ t

0

∫
Td
|∇ ⊗ ~w |2 dx ds

Theorem
Let T > 0, λ > 0, γ < 0, and α > 0 be given. Let ~g be s.t. ∇ · ~g = 0 and

‖~g(x , t)‖L2 . (1 +
1

t α2
), ‖∇k~g(x , t)‖L∞ .

(
max{t−1, t−(k+α+ d

2 )}
) 1

2
k = 0,1;

{
‖tγ~g‖L4([0,T ];L4

x ) ≤ λ, if d = 2
‖tγ~g‖L6([0,T ];L6

x ) ≤ λ, if d = 3.

Let ~w ∈ L∞((0,T ); H) ∩ L2((0,T ); V ) be a solution to (DE). Then,

E(~w)(t) . C(T , λ, α), for all t ∈ [0,T ].

‖ d
dt
~w‖Lp

t H−1
x
≤ C(T , λ, α),

where p = 2, if d = 2 and p = 4
3 , if d = 3.
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Weak Solutions for the Difference Equation

Theorem
Let T > 0, λ > 0, γ < 0 and α > 0 be given. Assume that the function ~g
satisfies ∇ · ~g = 0 and

‖~g(x , t)‖L2 . (1 +
1

t α2
)

‖∇k PM~g(x , t)‖L∞ .
(

max{t−1, t−(k+α+ d
2 )}
) 1

2
for k = 0,1.

Furthermore, assume that we have:{
‖tγ~g‖L4

x ;t∈[0,T ]
≤ λ, if d = 2

‖tγ~g‖L6
x ;t∈[0,T ]

≤ λ, if d = 3.

Then there exists a weak solution ~w for the initial value problem (DE).
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Proof of Main Theorems: Gathering all the Pieces

We find solutions ~u to (NSE) by writing

~u = ~uω~f + ~w

where we recall that ~uω~f is the solution to the linear problem with initial datum
~fω and ~w is a solution to (DE) with ~g = ~uω~f .

~u is a weak solution for (NSE) if and only if ~w is a weak solution for (DE).
We also remark that uniqueness of weak solutions to (DE) is equivalent
to uniqueness of weak solutions (NSE).
The proof of the existence of weak solutions is the same for both d = 2
and d = 3 and it is a consequence of the existence theorem above.

Let γ < 0 be such that

0 < α <

{ 1
2 + 2γ, if d = 2
1
3 + 2γ, if d = 3.
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By the probabilistic estimates with σ = 0, p = q = 4 when d = 2, and
p = q = 6 when d = 3 we have that given λ > 0, if we define the set

Eλ := E
λ,α,~f ,γ,T = {ω ∈ Ω / ‖tγ~uω~f ‖Lp

[0,T ],x
> λ},

there exist C1,C2 > 0 such that

P(Eλ) ≤ C1 exp

−C2

(
λ

CT‖~f‖H−α

)2
 .

Now, let λj = 2j , j ≥ 0 and define Ej = Eλj . Note Ej+1 ⊂ Ej . Let

Σ := ∪Ec
j ⊂ Ω.

Then

1 ≥ P(Σ) = 1− lim
j→∞

P(Ej ) ≥ 1− lim
j→∞

exp

−C2

(
2j

CT‖~f‖H−α

)2
 = 1.
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Final Step:

Our goal is now to show that for a fixed divergence free vector field
~f ∈ (H−α(Td ))d and for any ω ∈ Σ, if we define ~g = ~uω~f , the initial value
problem (DE) has a global weak solution. In fact given ω ∈ Σ, there exists j
such that ω ∈ Ec

j . In particular we then have

‖tγ ~g‖Lp
x,T
≤ λj .

Hence assumptions on ~g in the previous theorems are satisfied. This
concludes the proof.
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