Scattering Sheep: Kink Collisions in the Presence of False Vacua

Jenny Ashcroft

Based on arXiv:1604.08413 in collaboration with

Minoru Eto, Mareike Haberichter, Muneto Nitta & Manu Paranjape

South East Mathematical Physics Seminars, University of Oxford, 11th July 2016

Outline

Introduction

- The model
- A and B "kinks"

2 Scattering Outcomes

- AB Scattering
- BA Scattering
- BA Scattering
- AB Scattering

Summary and Discussion

The model

Consider a model of two real scalar fields $\phi(x, t)$ and $\psi(x, t)$ defined by

$$\mathcal{L} = rac{1}{2} (\partial_\mu \psi \partial^\mu \psi + \partial_\mu \phi \partial^\mu \phi) - V(\psi, \phi),$$

where $V(\psi, \phi)$ is a scalar potential given by

$$V(\psi,\phi) = V_{\psi}(\psi) + V_{\phi}(\phi) + V_{\psi\phi}(\psi,\phi) - V_0,$$

with the individual potential terms

$$V_{\phi}(\phi) = \alpha \left(\sin^2(\pi\phi) + \epsilon_{\phi} \sin^2(\pi\phi/2) \right),$$

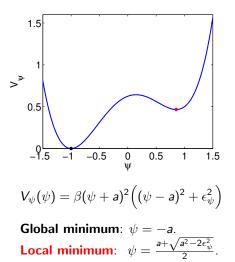
$$V_{\psi}(\psi) = \beta (\psi + a)^2 \left((\psi - a)^2 + \epsilon_{\psi}^2 \right),$$

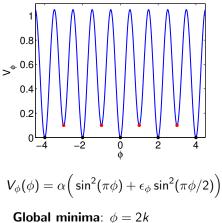
and the interaction potential

$$V_{\psi\phi}(\psi,\phi) = \lambda \frac{(\psi-a)^2 \left((\psi+a)^2 + \epsilon_{\psi}^2\right)}{\left(V_{\phi}(\phi) - V_{\phi}(1/2)\right)^2 + \gamma^2}$$

Tunneling decay of false domain walls: the silence of the lambs, M. Haberichter, R. MacKenzie, M.B. Paranjape & Y. Ung (2015).

The potential

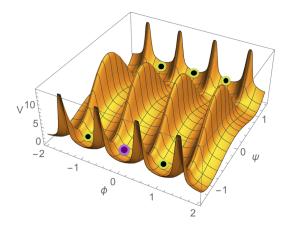




Local minima: $\phi = 2k + 1, k \in \mathbb{Z}$.

True and false vacua

In a theory with scalar fields, any field configuration that is a local minimum of the potential energy density is a vacuum. More than one vacuum can exist, and not all vacua need have the same energy. The field configuration with the lowest energy is called the *true vacuum*; any higher-energy local minimum is a *false vacuum*.



Parameter choice

From now on, we choose the parameter values

 $\alpha = 0.5\,, \quad \beta = 0.5\,, \quad \gamma = 0.01\,, \quad a = 1\,, \quad \epsilon_\psi = 1\,, \quad \epsilon_\phi = 0.01\,, \quad \lambda = 0.1\,.$

Then the true vacua are

$$\{\psi = -0.7593, \phi = 2k\},\$$

and false vacua

 $\{\psi = -0.7552, \ \phi = 2k+1\}, \ \{\psi = 0.6396, \ \phi = 2k\}, \ \{\psi = 0.6463, \ \phi = 2k+1\}.$

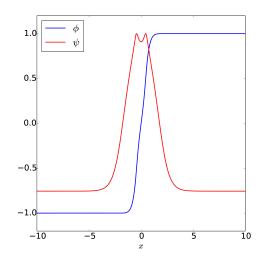
Original motivation

Sheep ϕ are in false vacuum outside domain wall and true vacuum inside.

Left alone they would separate to infinity to extend the true vacuum.

However **shepherd** ψ is in true vacuum outside domain wall, and false within!

[The shepherd field is unstable to quantum tunnelling to its true vacuum. Once this occurs, the sheep are without a shepherd and will spread out to infinity - *the silence of the lambs* arXiv:1506.05838.]



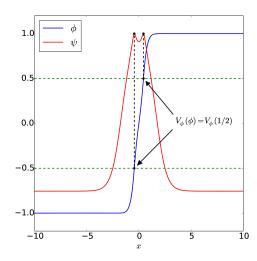
Construction of the interaction potential

Recall that the interaction potential is given by

$$egin{split} V_{\psi\phi}(\psi,\phi) &= \lambda rac{(\psi-\mathsf{a})^2 ig((\psi+\mathsf{a})^2+\epsilon_\psi^2ig)}{ig(V_\phi(\phi)-V_\phi(1/2)ig)^2+\gamma^2} \end{split}$$

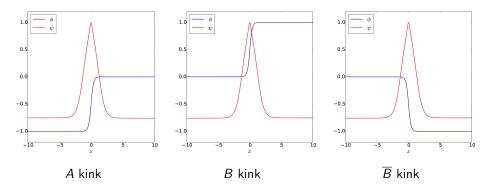
We choose γ to be very small, so that this will become very large when $V_{\phi}(\phi) = V_{\phi}(1/2)$ and ψ is far away from $\pm a$.

The ϕ solitons may not pass through the ψ solitons without making the energy contribution from the interaction term "blow up".



A and B kinks

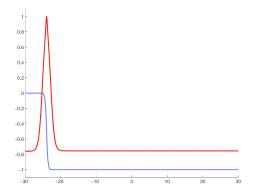
Kinks interpolating between a false vacuum (F) and a true vacuum (T). We call a $F \rightarrow T$ kink, a A kink, and a $T \rightarrow F$ kink a B kink. Kinks travelling $F \rightarrow T$ and $T \rightarrow F$ in the reverse direction are denoted by \overline{A} and \overline{B} respectively.



The effect of having two different vacua

- It is energetically favourable to have the largest region of true vacuum possible
- Our kinks have true vacuum at one boundary, and false at the other.
- When evolved from rest they will accelerate away to allow the region of true vacuum to expand.

\overline{B} kink evolved from rest:



Pairing up kinks

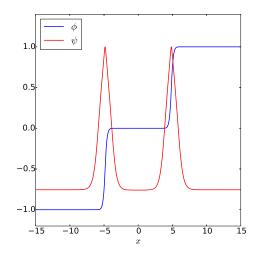
- The structure of true and false vacua excludes some combinations of kinks.
- Whether the kinks will attract or repel depends on whether there is false or true vacuum in between them.

	А	В	\overline{B}	Ā
Α	Х	repulsive	repulsive	Х
В	attractive	Х	Х	attractive
\overline{B}	attractive	Х	Х	attractive
\overline{A}	Х	repulsive	repulsive	Х

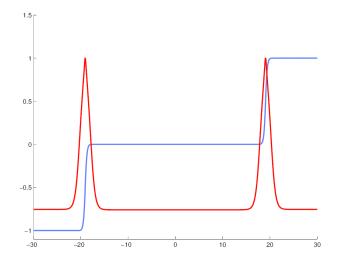
• We will consider configurations of the types AB, BA, $B\overline{A}$ and $A\overline{B}$.

AB Configuration

- Attaching an *A* kink to a *B* kink.
- We begin with the kinks well separated.
- Note that the **true vacuum** is in between the kinks, so they are **repulsive**.
- We boost the kinks towards each other for a range of initial velocities $0 \le v \le 0.9$ and observe the results...

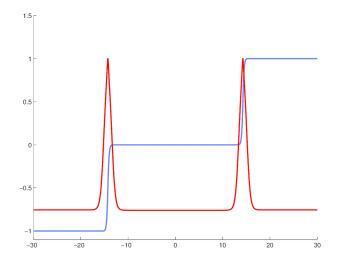


AB Outcome I - Repulsion (v = 0.3)



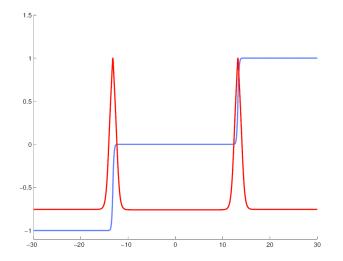
For initial speed $v \leq 0.476$, the kinks cannot overcome their mutual repulsion.

AB Outcome II - "Sticking" (v = 0.7)



For 0.476 < v < 0.707 and v > 0.801, the kinks form a false domain wall.

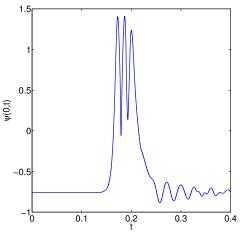
AB Outcome III - Reflection (v = 0.8)



For initial speed $v \in [0.707, 0.801]$, the kinks reflect off each other.

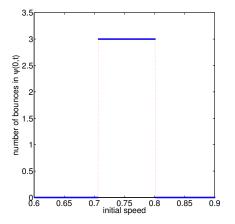
AB Reflection - "Bounces"

- We plot the shepherd field $\psi(0, t)$ at the origin.
- During the reflection, there are a number of oscillations, or "bounces", in ψ(0, t).
- This number is conserved in each window of reflection behaviour.



v = 0.75

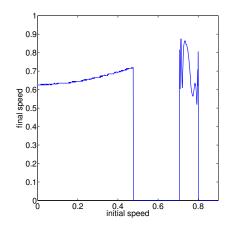
Bounce number conservation



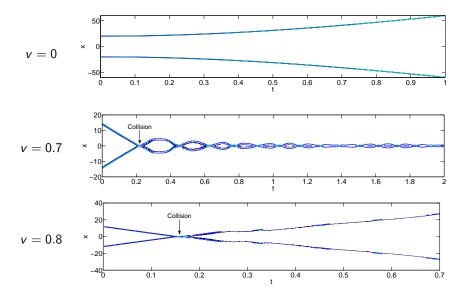
- We can see the conservation of bounce number in a plot of number of bounces against initial speed.
- Where the kinks form a false domain wall, (so do not reflect), zero bounces are counted.
- Throughout the reflection window, three bounces are counted.

Overview I: Incoming and outgoing velocity

- For v ≤ 0.476, the kinks cannot overcome their mutual repulsion, and accelerate away from each other to infinity.
- If the kinks form a false domain wall, the final speed is zero.
- In the reflection window $v \in [0.707, 0.801]$, final speed is again non-zero as the kinks separate to infinity.

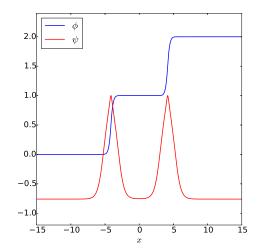


Overview II: Soliton trajectories

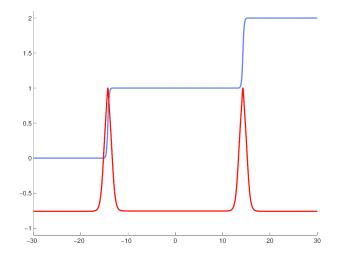


BA Configuration

- Attaching a *B* kink to an *A* kink.
- Note that the false vacuum is in between the kinks, so they are attractive.
- We boost the kinks towards each other for a range of initial velocities $0 \le v \le 0.9$ and observe the results...



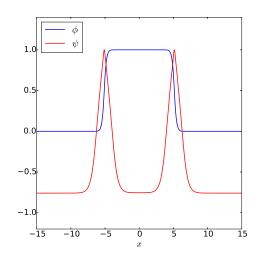
BA Outcome - "Sticking" (v = 0.7)



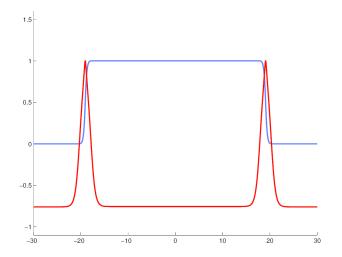
There is only one outcome: the kinks trap each other and form a true domain wall.

$B\overline{A}$ Configuration

- Attaching a B kink to an A kink.
- This is similar to kink-antikink scattering.
- Note that the false vacuum is in between the kinks, so they are attractive.
- We boost the kinks towards each other for a range of initial velocities $0 \le v \le 0.9$ and observe the results...

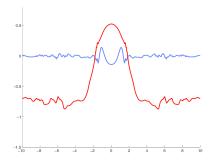


 $B\overline{A}$ - Annihilation (v = 0.3)



The kinks annihilate by forming an **oscillon** which decays to the true vacuum.

Oscillons



An **oscillon** is a long-lived, oscillatory bound state which can persist for thousands of oscillations before decaying to the vacuum.

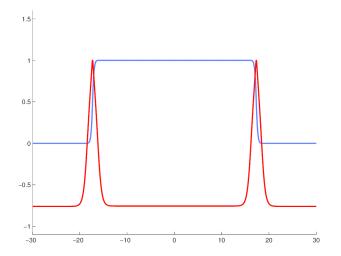
Kink-antikink collisions in which oscillons are formed occur in several models, e.g.

P. Anninos, S. Oliveira & R. A. Matzner, Phys. Rev. D44 (1991)

A. Halavanu, T. Romanczukiewicz & Y. Shnir, Phys. Rev. D86 (2012)

J. Braden, J. R. Bond & L. Mersini-Houghton, JCAP 1503 (2015)

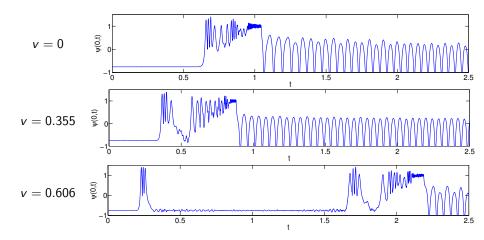
V. A. Gani, V. Lensky & M. A. Lizunova JHEP 08 (2015) $B\overline{A}$ - Reflection then Annihilation (v = 0.5)



The kinks first reflect off one another, then collide a second time and annihilate.

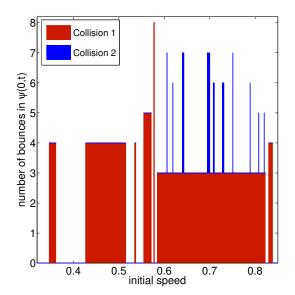
$B\overline{A}$ Bounce plots

By plotting the shepherd field $\psi(0, t)$, we see key features of the kink interactions.

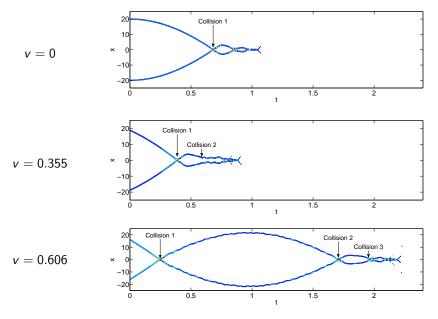


BA Overview I: Bounce number

- We count the number of bounces during the first collision in red, and during the second collision in blue.
- If the kinks annihilate, then no bounces are counted.
- Thus far, we have not found any windows with three or more collisions.

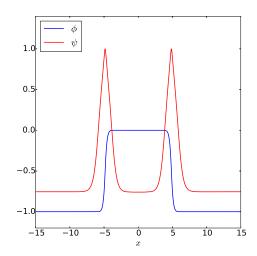


$B\overline{A}$ Overview II: Soliton trajectories

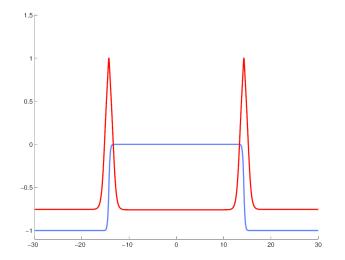


$A\overline{B}$ Configuration

- Attaching an A kink to a B kink.
- Note that the **true vacuum** is in between the kinks, so they are **repulsive**.
- We boost the kinks towards each other for initial velocities $0 \le v \le 0.9$.
- For v ≤ 0.476, the kinks cannot overcome their mutual repulsion.
 Otherwise, there are two possible outcomes...

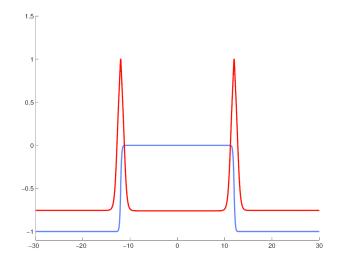


 $A\overline{B}$ Outcome II - Annihilation (v = 0.7)



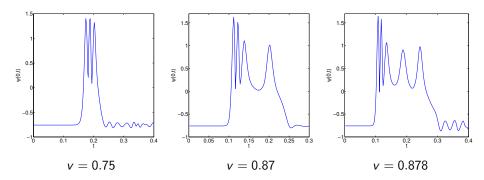
The kinks annihilate by forming an **oscillon** which decays to the false vacuum.

 $A\overline{B}$ Outcome III - Reflection (v = 0.75)



The kinks reflect off each other, and separate to infinity.

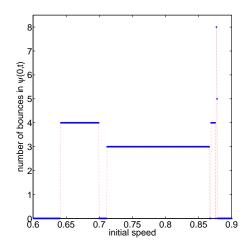
$A\overline{B}$ Reflection - Bounce plots



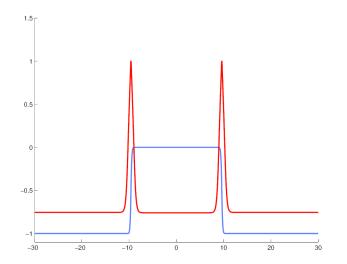
When plotting the shepherd $\psi(0, t)$ as a function of time, we observe different numbers of bounces in different windows of the reflection behaviour.

Bounce number conservation

- The bounce number is conserved in each window of the reflection behaviour.
- The smallest number of bounces seen for this configuration is three.
- The largest number of bounces seen is eight. This has an unusual structure of a group of six bounces shortly followed by two individual bounces.



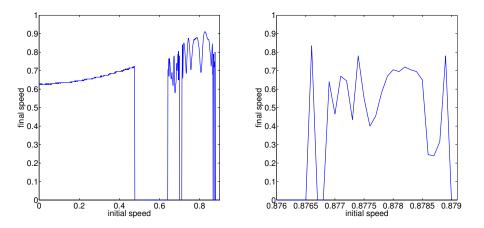
 $A\overline{B}$ - 8 bounce (v = 0.877)



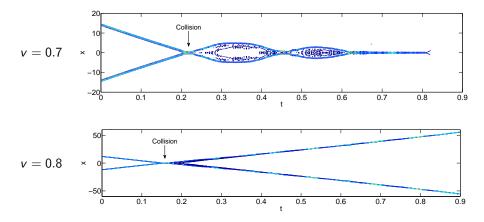
There are 8 "bounces" in the shepherd field before the kinks separate.

$A\overline{B}$ Overview I - Incoming and outgoing velocity

There is a fractal structure. When we go to higher resolution, more windows of the reflection behaviour are found.



$A\overline{B}$ Overview II - Soliton trajectories



Summary

There are a rich variety of scattering outcomes in this model. Depending on the impact velocity and initial configuration, kinks can:

- repel,
- form true or false domain walls ("sticking"),
- reflect off each other,
- annihilate by forming an oscillon which decays to the true or false vacuum.

We summarise the observed behaviours in the following table:

	Repel	Annihilate	Stick	Reflection
AB	\checkmark	X	\checkmark	\checkmark
BA	X	X	\checkmark	X
ΒĀ	X	\checkmark	X	\checkmark
$A\overline{B}$	\checkmark	\checkmark	X	\checkmark