
Calculus and heat flow in metric measure spaces
and spaces with Riemannian curvature

bounds from below

L. Ambrosio

Scuola Normale Superiore, Pisa
http://cvgmt.sns.it

Luigi Ambrosio (SNS) Oxford, September 2012 1 / 31



A.-Gigli-Savaré: Calculus and heat flow in metric measure spaces
(X ,d ,m) and applications to spaces with Ricci bounds from below.
Goal. To develop a “calculus” in metric measure spaces, use it to
identify different notions of heat flow, and apply these results to the
Lott-Sturm-Villani metric measure spaces with Ricci curvature bounded
from below.

A.-Gigli-Savaré: Metric measure spaces with Riemannian Ricci
curvature bounded from below.
Goal. Introduce a more restrictive and “Riemannian” notion of Ricci
bound from below for metric measure spaces, still consistent and
stable under measured Gromov-Hausdorff limits, which rules out
Finsler spaces.

(both available on http://cvgmt.sns.it, or ArXiv)

A.-Gigli-Savaré: Bakry-Emery condition and Riemannian Ricci
curvature bounds (to appear).
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Motivations
Cheeger-Colding studied in detail limits, in the Gromov-Hausdorff
sense, of sequences of Riemannian manifolds with given dimension
N and uniform lower bound K on Ricci tensor (with more recent
contributions by Colding-Naber, Honda). Even though many results
(rectifiability, tangent spaces, etc.) are available, these limits are
described only in metric terms. Question: is there an intrinsic/richer
description of these spaces? Can we develop intrinsic calculus tools
(gradient, differential, heat flow,..)?

Can we relate the “Lagrangian" CD(K ,N) theory, developed by
Lott-Sturm-Villani, to the “Eulerian" cd(ρ,n) theory of Bakry-Emery?

One of the great merits of the first theory, based on optimal
transportation, is stability under GH limits, while the second one, based
on the theory of Markov semigroups and the so-called Γ-calculus, is
maybe more powerful in the derivation in sharp form of analytic and
geometric inequalities (Poincaré, logarithmic Sobolev, isoperimetric..).
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Some by now “classical” results

Let us consider in Rn the heat equation (ut (x) = u(t , x))

d
dt

ut = ∆ut .

Classically, it can be viewed as the gradient flow of the energy

Dir(u) :=
1
2

∫
Rn
|∇u|2 dx (+∞ if u /∈ H1(Rn))

in the Hilbert space H = L2(Rn).

Formally, t 7→ ut solves the ODE u′ = −∇Dir(u) in H because

Dir “differentiable” at u ⇐⇒ −∆u ∈ L2, ∇Dir(u) = −∆u.
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In 1998, Jordan-Kinderlehrer-Otto proved that the same equation
arises as gradient flow of the entropy functional

Ent(ρL n) :=

∫
Rn
ρ log ρdx (+∞ if µ is not a.c. w.r.t. L n)

in the space P2(Rn) of probability measures with finite quadratic
moments, with respect to Wasserstein distance W2.

W 2
2 (µ, ν) := min

{∫
Rn×Rn

|x − y |2 dγ(x , y) : (π1)]γ = µ, (π2)]γ = ν

}
.

Push forward notation. f : X → Y Borel induces a map
f] : P(X )→P(Y ):

f]µ(B) := µ
(
f−1(B)

)
∀B ∈ B(Y ).
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The reason underlying the JKO result is that we may view P2(Rn) as
an infinite-dimensional differentiable manifold, considering the tangent
vector field vt to a curve (µt ) in P2(Rn) as the “velocity” occurring in
the continuity equation

d
dt
µt +∇ · (vtµt ) = 0, vt = ∇φt .

Then, defining the metric at µ ∈P2(Rn) as

〈v ,w〉µ :=

∫
v(x) · w(x) dµ(x) v , w ∈ {∇φ : φ ∈ C∞c (Rn)}L

2(µ)

we turn P2(Rn) into a Riemannian manifold and it can be proved (Otto,
Benamou-Brenier) that the induced distance is precisely W2.
This discovery originated a huge literature, where many other diffusion
(even of fourth order) and transport equations are viewed that way,
with new existence and uniqueness results, rates of convergence to
equilibrium, etc. In our papers we explore the potential of these ideas
in a nonsmooth setting.
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Proofs of this equivalence
1. By the so-called Otto calculus, i.e. formally viewing P(Rn) as
an infinite dimensional Riemannian manifold. Computing with this
structure the gradient flow of Ent for µt = ρtL

n gives vt = ∇ log ρt .

2. Prove that the implicit time discretization scheme (Euler scheme),
traditionally used for the time discrete approximation of gradient flows,
when done with energy Ent and distance W2, does converge to the
heat equation.

3. Give a meaning to what “gradient flow of Ent in P(Rn) w.r.t. W2
means”, and check that solutions of this gradient flow are solutions to
the heat equation. Then, apply uniqueness for d

dt ut = ∆ut .

The last strategy is more abstract, but still uses the differentiable
structure of Rn. The question is to understand deeper reasons for this
equivalence, in particular on which structural properties of the space
it depends (Riemannian manifolds, Finsler spaces, Wiener spaces,
sub-Riemannian spaces, Alexandrov spaces, etc.)
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Metric measure spaces
Let us consider a metric measure space (X ,d ,m), with m ∈P(X ).
In this framework it is still possible to define a “Dirichlet energy”, that
we call Cheeger functional:

Ch(f ) :=
1
2

inf
{

lim inf
n→∞

∫
X
|∇fn|2 dm : fn ∈ Lip(X ),

∫
X
|fn − f |2 dm→ 0

}
,

where
|∇g|(x) := lim sup

y→x

|g(y)− g(x)|
d(y , x)

is the slope (also called local Lipschitz constant).
Also, one can consider Shannon’s relative entropy functional
Entm : P(X )→ [0,+∞]

Entm(ρm) :=

∫
X
ρ log ρdm (+∞ if µ is not a.c. w.r.t. m).
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The basic result is that the equivalence between L2-gradient flow of
Ch and W2-gradient flow of Entm always holds, if the latter is properly
understood. But, without additional assumptions on the space, both
objects can be trivial.
Example. Let X = [0,1], d the Euclidean distance, m =

∑
n≥1 2−nδqn ,

where {qn}n≥1 is an enumeration of [0,1]∩Q. Let An ⊃ Q∩X be open
sets with L 1(An)→ 0 and

χn(t) :=

∫ t

0

(
1− χAn (s)

)
ds t ∈ [0,1].

Then f ◦ χn → f in L2(X ,m) for all f ∈ Lip(X ) and f ◦ χn is locally
constant in Q ∩ X hence

Ch(f ) = 0 ∀f ∈ Lip(X ).

It follows that Ch ≡ 0 in L2(X ,m).
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Identification of weak gradients
A closely related question, relevant in particular for the second paper,
is the identification of weak gradients. The first one, that we call relaxed
gradient |∇f |∗, is the object that provides integral representation to Ch:

Ch(f ) =
1
2

∫
X
|∇f |2∗ dm ∀f ∈ D(Ch).

It has all the natural properties a weak gradient should have, for
instance locality

f = g on B =⇒ |∇f |∗ = |∇g|∗ m-a.e. in B

and chain rule

|∇(φ ◦ f )|∗ = |φ′(f )||∇f |∗ m-a.e. in X .

This gradient is useful when doing “vertical” variations ε 7→ f + εg
(i.e. in the dependent variable).
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Identification of weak gradients

But, when computing variations of the entropy, the “horizontal”
variations ε → f (γε) (i.e. in the independent variable) are necessary.
These are related to another weak gradient |∇f |w , defined as follows.
Let us recall, first, the notion of upper gradient (Heinonen-Koskela): it
is a function G satisfying

(∗) |f (γ1)− f (γ0)| ≤
∫
γ

G

on all absolutely continuous curves γ. Obviously G ≥ |∇f | in a
“smooth” setting and the smallest upper gradient is precisely |∇f |.
We consider the so-called weak upper gradient property by requiring (*)
along “almost all” curves γ in AC2([0,1]; X ). Then, we define |∇f |w as
the weak upper gradient G with smallest L2(X ,m) norm. This is related
to a notion introduced by Koskela-MacManus, Shanmugalingham, but
with a different notion of null set of curves.
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Null sets of curves
We say that a (Borel) set Γ of absolutely continuous curves
γ : [0,1]→ X is null if

π(Γ) = 0 for any test plan π.

Here, the class of test plans is simply the collection of all
π ∈P(AC2([0,1]; X )) satisfying

(et )]π ≤ Cm ∀t ∈ [0,1] for some C = C(π) ≥ 0.

Theorem. In any complete and separable metric measure space
(X ,d ,m) with m finite on bounded sets the relaxed gradient |∇f |∗ and
the minimal weak upper gradient |∇f |w coincide m-a.e. in X.
Of course, maybe they are both trivial without extra assumptions.
The proof of this identification uses ideas from optimal transportation,
as lifting of solutions to the heat flow to probability measures in
AC2([0,1]; X

)
and the energy dissipation rate of Entm.
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Sketch of the proof

First, it is not hard to show that |∇f |∗ ≥ |∇f |w , the nontrivial implication
is the converse one. To achieve it, we compute the energy dissipation
rate of the entropy first in the “Eulerian" way

− d
dt

∫
X

gt log gt dm = −
∫

X
log gt ∆gt dm =

∫
X

|∇gt |2∗
gt

dm

= 4
∫

X
|∇
√

gt |2∗ dm.

and then we estimate in the “Lagrangian" way

− d
dt

∫
X

gt log gt dm ≤ 2
∫

X
|∇
√

gt |2∗ dm + 2
∫

X
|∇
√

gt |2w dm.

Therefore, along solutions to the heat flow, we have the converse
inequality

∫
|∇√gt |2∗ dm ≤

∫
|∇√gt |2w dm.
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Equivalence of gradient flows
We assume in this section that the metric measure space (X ,d ,m)
satisfies ∫

X
e−V 2(x) dm(x) <∞

for some Lipschitz weight function V : X → R. It surely holds with
V (x) = d(x , x0) if m(B(x0, r)) ≤ Cec r2

. We also define the descending
slope of the entropy

|∇−Entm|(µ) := lim sup
ν→µ

[Entm(µ)− Entm(ν)]+

W2(ν, µ)

and we assume that the conditions

sup
n

Entm(ρnm) <∞, ρnm ⇀ ρm, lim
n→∞

∫
X

V 2ρn dm =

∫
X

V 2ρdm,

imply
lim inf
n→∞

|∇−Entm|(ρnm) ≥ |∇−Entm|(ρm)

and that |∇−Entm| is an upper gradient of Entm. These properties of
the slope are fulfilled in all CD(K ,∞) spaces.
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Lott-Sturm-Villani CD(K ,∞) spaces
In these spaces (I consider only the case N = ∞) one requires K -
convexity along Wasserstein geodesics, namely for all µ0, µ1 ∈ D(Entm)
there exists a constant speed geodesic µt satisfying

Entm(µt ) ≤ (1− t)Entm(µ0) + tEntm(µ1)− K
2

t(1− t)W 2
2 (µ0, µ1).

When (X ,d) is a Riemannian manifold, CD(K ,∞) holds iff RicX ≥ KI
(Cordero-McCann-Schmuckenschläger, Sturm-Von Renesse).
Consequences of convexity:
• Duality formula for the slope (here stated for K = 0):

|∇−Entm|(µ) = sup
ν 6=µ

[Entm(µ)− Entm(ν)]+

W2(µ, ν)
.

It implies, among other things, that µ 7→ |∇−Entm|(µ) is l.s.c.
• Upper gradient property. The previous formula for the slope implies a
one-sided and local Lipschitz estimate

Entm(µt )− Entm(µs) ≤ |∇−Ent|(µt )W2(µt , µs).
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Equivalence of gradient flows

Theorem. Let ρ0 ∈ L2(X ,m) be a probability density and let ρt be the
L2-gradient flow of Ch starting from ρ0. Then ρt is a probability density
for all t ≥ 0 and ρtm is the W2-gradient flow of Entm starting from f0m.
Conversely, if µ0 = ρ0m with ρ0 ∈ L2(X ,m) and µt is the W2-gradient
flow of Entm starting from µ0, then µt = ρtm for all t ≥ 0.
Finally, the energy dissipation rates coincide:

4
∫

X
|∇√ρt |2∗ dm = |∇−Entm|2(ρtm) for a.e. t > 0.

Corollary. (Fisher information functional and slope of Entm coincide)

4
∫

X
|∇√ρ|2∗ dm = |∇−Entm|2(ρm).
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Equivalence of gradient flows

The proof of the theorem consists of the following two steps:
(1) inclusion of L2-gradient flows into W2-gradient flows;
(2) uniqueness of W2-gradient flows.
This strategy, borrowed from Gigli-Kuwada-Ohta, reverses the usual
one adopted in Rn, Riemannian manifolds and other “smooth” spaces.
Part (2), a key point in the new strategy, is due to Gigli. Notice however
that contractivity of W2 may fail (Ohta-Sturm) (an open problem is to
find whether contractivity holds for other better adapted distances).
I will now focus on the meaning of L2- and W2- gradient flows and
explain briefly (1).
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The L2-gradient flow
The L2 gradient flow ft is the unique solution to the differential inclusion

d
dt

ft ∈ −∂Ch(ft ) for a.e. t > 0,

where

∂Ch(f ) :=
{
ξ ∈ L2(X ,m) : Ch(g) ≥ Ch(f )+

∫
X
ξ(g−f )dm ∀g ∈ L2(X ,m)

}
is the subdifferential of the convex and lower semicontinuous functional
Ch in L2(X ,m). Existence, uniqueness, L2-contractivity and the ODE
formulation

d
dt

ft = ∆ft

where, by definition, −∆f is the element with minimal L2 norm in
∂Ch(f ), are ensured by the standard Hilbertian theory (Komura,
Brezis, Crandall, Pazy). Warning: (*) is, in general, a nonlinear PDE!!
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The W2-gradient flow
The energy dissipation rate for Entm along L2-gradient flows is

d
dt

∫
X
ρt log ρtdm =

∫
X

log ρt ∆ρt dm = −
∫
{ρt>0}

|∇ρt |2∗
ρt

dm.

The notion of W2-gradient flow of Entm, instead, is based on the idea,
due to De Giorgi (and developed in the 80s by Marino, De Giovanni,...),
that even for general energies F in general metric spaces all differential
informations can be encoded by looking just at the maximal rate of
energy dissipation:

(DG)
d
dt

F (x(t)) ≤ −1
2
|∇F |2(x(t))− 1

2
|x ′(t)|2.

Indeed, in a sufficiently smooth setting, along any curve y(t), we have
d
dt

F (y(t)) = 〈∇F (y(t)), y ′(t)〉

≥ −|∇F (y(t))||y ′(t)| (= iff −y ′(t) is parallel to ∇F (y(t)))

≥ −1
2
|∇F |2(y(t))− 1

2
|y ′(t)|2 (= iff |∇F |(y(t)) = |y ′(t)|).
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The W2-gradient flow

(DG)
d
dt

F (x(t)) ≤ −1
2
|∇F |2(x(t))− 1

2
|x ′(t)|2.

All terms in (DG) make sense in a metric space (Y ,dY ): |x ′| can be
replaced by the metric derivative

|x ′|(t) := lim
s→t

dY (x(s), x(t))

|s − t |

and |∇F | by the descending slope |∇−F |, so that the speed is 0 at
minimum points.
Coming back to the case (Y ,dY ) = (P2(X ),W2), F = Entm, to convert
L2-heat flows to W2-gradient flows we need to bound both the metric
derivative of t 7→ ρtm and the descending slope of Entm(ρt ) with the
L2-energy dissipation rate.
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Kuwada’s lemma (from Gigli-Kuwada-Ohta ’10)

Lemma. Let ρ0 ∈ L2(X ,m) a probability density, ρt the L2-gradient flow
starting from ρ0. Then the curve µt := ρtm is absolutely continuous in
P2(X ) and

|µ̇t |2 ≤
∫
{ρt>0}

|∇ρt |2∗
ρt

dm for a.e. t > 0.

The proof of the Lemma, that we extended to all metric measure
spaces, requires a fine analysis of the differentiability properties of
solutions Qt f of the Hopf-Lax semigroup

Qt f (x) := inf
y∈X

f (y) +
1
2t

d2(x , y),
d
dt

Qt f (x) +
1
2
|∇Qt f |2(x) ≤ 0.

These solutions describe (Bernard-Buffoni, Lott-Villani) the evolution in
time of Kantorovich potentials.
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Riemannian Ricci lower bounds
As shown by Cordero Erausquin-Sturm-Villani, all Minkowski spaces
(Rn endowed with the Lebesgue measure and any norm ‖ · ‖) satisfy
the CD(0,n) (and therefore the CD(0,∞)) condition. On the other
hand, Cheeger-Colding ruled out the possibility to obtain these spaces
as limits of Riemannian manifolds.
Question. Is there a more restrictive notion, still stable and (strongly)
consistent with the Riemannian case, that rules out Minkowski (and
then Finsler) spaces?
Definition. We say that (X ,d ,m), with m(X ) < ∞, has Riemannian
Ricci curvature bounded from below by K ∈ R, and write RCD(K ,∞),
if one of the following equivalent conditions hold:

(i) (X ,d ,m) is a CD(K ,∞) space and the L2 heat flow ht is linear;
(ii) (X ,d ,m) is a CD(K ,∞) space and the W2 heat flow Ht is additive

(i.e. convex and concave) on P2(X );
(iii) for all µ ∈P2(X ) with suppµ ⊂ supp m, Htµ is a gradient flow in

the EVIK sense.
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Properties of RCD(K ,∞) spaces

• Stability under measured Gromov-Hausdorff limits. Here we can work
with the same notions of isomorphim between metric measure spaces
and distance between isomorphism classes introduced by Sturm. In
the proof of this result it is the EVIK formulation that plays a decisive
role.
• Tensorization. If (X ,dX ,mX ) and (Y ,dY ,mY ) are RCD(K ,∞), so is

(X × Y ,
√

d2
X + d2

Y ,mX ×mY ). Here we can remove the non branching
assumption of the CD(K ,N) theory.
• Fine properties of the heat flow. The identification between the L2

heat flow ht and the W2 heat flow Ht allows to pick the best properties
from each of them: for instance, the symmetry of the transition
probabilities θt : X × X → [0,∞), defined by Htδx := θt (x , ·)m, comes
from the fact that ht is L2-selfadjoint, while the contractivity properties
of ht in spaces different from Lp(X ,m) follow from those of Ht .
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More properties of the heat flow

(1) The pointwise formula h̃t f (x) :=
∫

f dHtδx provides a version of
ht f and an extension of ht to a contraction semigroup in all Lp(X ,m)
spaces.
(2) h̃t leaves Lip(supp m) invariant and Lip(h̃t f ) ≤ e−KtLip(f ) (it
follows by the contractivity estimate W2(Htδx ,Htδy ) ≤ e−Ktd(x , y)).
Furthermore, h̃t maps L∞(X ,m) in Cb(supp m).
(3) The Bakry-Emery estimate holds:

(BEK ,∞) |∇(ht f )|2∗ ≤ e−2Ktht |∇f |2∗ m-a.e. in X .
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Properties of RCD(K ,∞) spaces: Dirichlet forms
Since Ch is a quadratic form in RCD(K ,∞) spaces, the analysis of the
connection with Fukushima’s theory of Dirichlet forms is mandatory.
Let

E(u, v) :=
1
4
(
Ch(u + v)− Ch(u − v)

)
be the bilinear form associated to Ch. It is a Dirichlet form (i.e. closable
and Markovian) because Ch is L2(X ,m)-lower semicontinuous and
decreases, by chain rule, under left composition with 1-Lipschitz maps.
In this theory, two objects are naturally defined, namely the local
energy measure

[u](ϕ) := E(u,uϕ)− E(
u2

2
, ϕ)

and the induced distance

dE(x , y) := sup {|ψ(x)− ψ(y)| : [ψ] ≤ m} .
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Properties of RCD(K ,∞) spaces: Dirichlet forms
Theorem. In a RCD(K ,∞) space (X ,d ,m) the local energy measure
[u] coincides with |∇u|2∗m and the induced distance dE coincides with
d.
The proof involves the construction of a symmetric bilinear form

(u, v) ∈
[
D(Ch)

]2 7→ ∇u · ∇v ∈ L1(X ,m)

satisfying the Leibnitz rule and providing integral representation to E ,
namely E(u, v) =

∫
∇u · ∇v dm.

In addition, since E is also strongly local, the theory of Dirichlet forms
(Fukushima, Ma-Röckner) can be applied to obtain a unique (in law)
Brownian motion in (supp m,d ,m), i.e. a Markov process X t with
continuous sample paths satisfying

P(X t |X 0 = x) = Htδx ∀x ∈ supp m, t ≥ 0.
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Equivalence between (BE)K ,∞ and RCD(K ,∞)

We have seen that RCD(K ,∞) implies the Bakry-Emery condition. We
proved recently that also the converse holds.

Theorem. Let (X ,d ,m) be a metric measure space with m satisfying∫
X e−V 2

dm ≤ 1, V Lipschitz. Assume that:
(i) (X ,d) is complete, separable and length;
(ii) supp m = X and Cheeger’s energy Ch is quadratic;
(iii) ht maps L∞(X ,m) into Cb(X ) (Feller);
(iv) the (BE) condition holds:

|∇ht f |2∗ ≤ e−2Ktht |∇f |2∗.

Then (X ,d ,m) is a RCD(K ,∞) space.
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The EVI formulation of gradient flows
If H is Hilbert and F : X → R ∪ {+∞} is K -convex and l.s.c., we
can write the differential inclusion −x ′(t) ∈ ∂F (x(t)) for a.e. t > 0 as
follows:

∀y , 〈−x ′(t), y − x(t)〉+
K
2
|(x(t)− y |2 + F (x(t)) ≤ F (y) for a.e. t > 0.

Equivalently

∀y , d
dt

1
2
|x(t)− y |2 +

K
2
|(x(t)− y |2 + F (x(t)) ≤ F (y) for a.e. t > 0.

Definition. In a metric space (E ,d), a locally absolutely continuous
curve u : (0,∞) → E is an EVIK solution to the gradient flow of
F : X → R ∪ {+∞} if for all v ∈ D(F ) it holds

d
dt

1
2

d2(u(t), v) +
K
2
|(u(t)− v |2F (u(t)) ≤ F (v) for a.e. t > 0.

This formulation of gradient flows is equivalent in Hilbert spaces, but in
general stronger than the one based on energy dissipation (Savaré).
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Open problems and perspectives
(1) For the dimensional theory, i.e. N < ∞, we expect similar
connections in the case K = 0 between convexity of the Renyi entropy

EN(ρ) := −
∫

X
ρ1−1/N dm µ = ρm + µs, µs ⊥ m

the N-dimensional Bakry-Emery condition

(BE0,N) |∇(ht f )|2∗ +
t2

N
(∆ht f )2 ≤ ht |∇f |2∗ m-a.e. in X .

and Bochner’s inequality

∆
|∇f |2∗

2
≥ 〈∇∆f ,∇f 〉+

(∆f )2

N
.

But, the case CD(K ,N) with N < ∞ and K 6= 0 seems to be much
more problematic.
(2) What about nonlocal diffusions? Recent work in Rn by Erbar shows
that the Otto equivalence persists, properly understood. In this case
W2 has to be replaced by the distance arising by the minimization of a
suitable action functional, in the spirit of Benamou-Brenier.
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Open problems and perspectives

(3) In presence of doubling & Poincaré, Cheeger’s theory applies and
provides, in a suitable and very weak sense, local coordinates and a
tangent bundle. The relations with the calculus described in this lecture
are still not completely understood.
(4) What about the behaviour on small scales of RCD(K ,∞) spaces?
The question makes sense, if one adds a doubling condition on the
measure m. The natural conjecture is that tangent metric spaces, in
the measured GH sense, are Euclidean. This has been proved by
Cheeger-Colding, but for limits of Riemannian manifolds, there is work
in progress by Gigli in the RCD(K ,∞) framework.

Thank you for the attention!
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