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Goal

Define a good geometric flow that changes maps
u : M2 → (N, gN) into minimal surfaces.

Idea: Follow gradient flow to find critical points
− > NEED

Global solutions

Control on possible singularities

Result: A flow with elements in common with

mean curvature flow (looking for minimal surfaces)

harmonic map heat flow (known singularity structure)
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Setting

Fix

domain: M2 closed, orientable surface (of genus γ ∈ N0)

target: (N, gN) compact manifold, w.l.o.g. ↪→ Rk

For the two variables

u : M → N

g Riemannian metric on domain M

consider

E (u, g) :=
1

2

∫
M
|du|2g dvg .

Remark

Area(u) =

∫
M
|∂x1u ∧ ∂x2u| dx1dx2 ≤ E (u, g)

with “=” iff u is conformal, i.e. iff u∗gN = λ · g , λ ≥ 0.
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Area ↔ Energy

Remark

(u, g) critical point of E (·, ·)

⇔

u critical point of Area, more precisely, a branched minimal
immersion (or constant).
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Area ↔ Energy

Remark

(u, g) critical point of E (·, ·), i.e.{
0 = ∇uE = −τg (u) (harmonic)
0 = ∇gE = −1

4 Re(Φ(u, g)) (conformal)

⇔

u critical point of Area, more precisely, a branched minimal
immersion (or constant).

Here

τg (u) = tension = trg (∇gdu) = ∆gu + Ag (u)(∇u,∇u)

Φ(u, g) = Hopf-differential = φ · dz2

z = x + iy complex coordinate of (M, g), g = λ · (dx2 + dy 2)

φ = |ux |2 − |uy |2 − 2i〈ux , uy 〉
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Definition of the flow

First definition of a flow

∂tu = −∇uE = τg (u), ∂tg = −∇gE =
1

4
Re(Φ(u, g))

∂tu = τg (u)

∂tg =
1

4
Re(PHg (Φ(u, g)))

) (1)

for PHg the L2 orthogonal projection

PHg : {φdz2 quad. differential } → H(M, g) = {holomorphic quad. diff.}

Remark: dim(H(M, g)) <∞
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Definition of the flow

BAD definition of a flow

∂tu = −∇uE = τg (u), ∂tg = −∇gE =
1

4
Re(Φ(u, g))

since metric component is not well controlled.
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Definition of the flow

BAD definition of a flow

∂tu = −∇uE = τg (u), ∂tg = −∇gE =
1

4
Re(Φ(u, g))

Instead evolve by

∂tu = τg (u)

∂tg =
1

4
Re(PHg (Φ(u, g)))

) (1)

for PHg the L2 orthogonal projection

PHg : {φdz2 quad. differential } → H(M, g) = {holomorphic quad. diff.}

Remark: dim(H(M, g)) <∞
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Why is this the right flow?

Claim

(1) = gradient flow of E / symmetries.

“Proof”: Symmetries of E :

conformal invariance, E (u, g) = E (u, λ · g)
⇒ restrict g to Mc , c = 1, 0,−1 for genus γ = 0, 1,≥ 2

diffeomorphism invariance E (u, g) = E (u ◦ f , f ∗g)
⇒ Identify (u, g) ∼ (u ◦ f , f ∗g), f diffeo

Consider L2-gradient flow of E on

A = {[(u, g)], u ∈ C∞(M,N), g ∈Mc}.

Use L2 orthogonal splitting

TgMc = {Lxg =
d

dt
|t=0f ∗t g} ⊕ Re(H(g)).
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Definition

Definition of our flow

Evolve a pair (u, g) of map u : M → N and metric g ∈Mc by

∂tu = τg (u)

∂tg =
1

4
Re(PHg (Φ(u, g)))

) ((1))

describing the representative of the L2 gradient flow of E on A
chosen such that t 7→ g(t) has minimal L2 length.

Relation to other flows

genus γ = 0: H(g) = {0} ⇒ (1) =harmonic map flow
Global existence and asymptotic convergence (Struwe ’85)

γ = 1: Ding-Li-Liu’06: “Modified gradient flow” of

(u, a, b) 7→ E (u, ga,b), a, b ∈ R

agrees with (1)
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Existence of solutions

Theorem 1 (R. ’12)

To any (u0, g0) ∈ H1(M,N)×Mc there exists a (weak) solution
(u, g) of

∂tu = τg (u)

∂tg =
1

4
Re(PHg (Φ(u, g)))

) (1)

defined on [0,T )

and T <∞ only if (M, g(t)) degenerates in
moduli space as t ↗ T , i.e.

`(g(t))→ 0 as t ↗ T ,

`(g)=length of shortest closed geodesic in (M, g).
This solution is smooth away from finitely many times

at which finitely many harmonic spheres “bubble off”

across which g remains C 0,1
t C∞x .
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A few words on the proof...

∂tu = τg (u)

∂tg =
1

4
Re
(
PHg (Φ(u, g)))

)) (1)

Important to understand dependence on g of

PHg : {quad. diff.} → {holomorphic. quad. diff.}.

Use

Alternative point of view

Re(H(M, g)) = {k ∈ Sym(0,2) : trg (k) = 0 = divg (k)}

“Explicit” formula for Pg , given in terms of solutions of
elliptic PDE’s to be solved on the varying surfaces (M, g)

Ideas from Teichmüller theory (slice theorem) about the
structure of the Banachmanifold Ms

−1 of Hs hyperbolic
metrics.
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A few words on the proof...

Key-lemma to prove existence of solutions

The map g 7→ Pg is locally Lipschitz-continuous on the
Banachmanifold Ms

−1 in the sense that for every tensor

k ∈ Sym(0,2)

‖(Pg1 − Pg2)(k)‖Hs ≤ C · ‖g1 − g2‖Hs · ‖k‖L1 .
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Asymptotics

Theorem 2 (R.+Topping ’12)

If the solution (u, g) of Theorem 1 satisfies

inf
t∈[0,∞)

`(g(t)) > 0 (2)

then there are ti →∞ and diffeomorphisms fi

f ∗i (u(ti ), g(ti ))→ (u∞, g∞)

where

u∞ is a branched minimal immersion or constant

u∞ has the same action on π1 as u0,

u∗ : π1(M) 3 [σ] 7→ [u ◦ σ] ∈ π1(N)
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Can solutions degenerate?

Not if they are topologically non-degenerate:

Theorem 3 (R.+Topping ’12)

If (u0)∗ is injective (i.e. u0 incompressible) then the flow (1) is
global and

`(g(t)) ≥ δ(E0,N) > 0

⇒ From Theorem 2 we recover result of Sacks-Uhlenbeck and
Schoen-Yau on the existence of branched minimal immersions with
given injective action on π1.
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Outlook: Flowing general initial maps

Degeneration (at least at infitite time) can/does happen.

Theorem 4 (R.+Topping+Zhu) (in preparation)

If the solution of Theorem 1 is global, but

`(g(t))→ 0 as t →∞

then there exist ti →∞, diffeomorphisms fi : Σ→ M \ ∪jσji such
that

f ∗i (M, g(ti )) converges to a punctured hyperbolic surface
(Σ, h)

u(ti ) ◦ fi converges to a limit map u∞ : Σ→ (N, gN) which is,
on each connected component of Σ, a branched minimal
immersion (or constant)
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A few words on the proof of the asymptotics

Energy decays according to

d

dt
E (t) = −

∫
|τg (u)|2 + c |Pg (Φ(u, g))|2 dvg .

Thus if solution is global, there is ti →∞ such that

τg(ti )(u(ti ))→ 0  harmonic limit map u∞

Pg (Φ(u, g)(ti ))→ 0

Problem is not to prove that Φ(u∞, g∞) is holomorphic,

BUT

maps converge only weakly in H1 and Φ is quadratic in ∇u

⇒ Pg (Φ(u, g)(ti ))→ 0 does not imply Pg∞(Φ(u∞, g∞)) = 0
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One key lemma

Poincaré estimate for quadratic differentials (R.-Topping ’12)

For

a closed hyperbolic surface (M, g)

every quadratic differential Ψ on (M, g)

‖Ψ− PHg (Ψ)‖L1(M,g) ≤ C · ‖∂z̄Ψ‖L1(M,g)
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One key lemma

Uniform Poincaré estimate for quadratic differentials (R.-Topping
’12)
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One key lemma

Uniform Poincaré estimate for quadratic differentials (R.-Topping
’12)

For any genus bound Γ ∈ N there exists C <∞ such that for

every closed hyperbolic surface (M, g)

every quadratic differential Ψ on (M, g)

‖Ψ− PHg (Ψ)‖L1(M,g) ≤ C · ‖∂z̄Ψ‖L1(M,g)

C depends on

topology (i.e. genus)

but NOT on the geometry (diameter, injectivity radius,..)

of the surface.
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