Flowing to minimal surfaces

Melanie Rupflin¹ and Peter Topping

¹Max Planck Institute for Gravitational Physics

Conference on Nonlinear PDE, Oxford, 10 September 2012

Define a good geometric flow that changes maps $u: M^2 \to (N, g_N)$ into minimal surfaces.

Define a good geometric flow that changes maps $u: M^2 \rightarrow (N, g_N)$ into minimal surfaces.

Idea: Follow gradient flow to find critical points $- > \mathsf{NEED}$

Global solutions

Define a good geometric flow that changes maps $u: M^2 \rightarrow (N, g_N)$ into minimal surfaces.

Idea: Follow gradient flow to find critical points - > NEED

- Global solutions
- Control on possible singularities

Define a good geometric flow that changes maps $u: M^2 \to (N, g_N)$ into minimal surfaces.

Idea: Follow gradient flow to find critical points - > NEED

- Global solutions
- Control on possible singularities

Result: A flow with elements in common with

- mean curvature flow (looking for minimal surfaces)
- harmonic map heat flow (known singularity structure)

Setting

Fix

- domain: M^2 closed, orientable surface (of genus $\gamma \in \mathbb{N}_0$)
- target: (N, g_N) compact manifold, w.l.o.g. $\hookrightarrow \mathbb{R}^k$

Setting

Fix

- domain: M^2 closed, orientable surface (of genus $\gamma \in \mathbb{N}_0$)
- target: (N, g_N) compact manifold, w.l.o.g. $\hookrightarrow \mathbb{R}^k$

For the two variables

- $u: M \to N$
- g Riemannian metric on domain M

consider

$$E(u,g) := \frac{1}{2} \int_{M} |du|_g^2 dv_g.$$

Setting

Fix

- domain: M^2 closed, orientable surface (of genus $\gamma \in \mathbb{N}_0$)
- target: (N, g_N) compact manifold, w.l.o.g. $\hookrightarrow \mathbb{R}^k$

For the two variables

- $u: M \to N$
- g Riemannian metric on domain M

consider

$$E(u,g) := \frac{1}{2} \int_M |du|_g^2 dv_g.$$

Remark

$$\mathsf{Area}(u) = \int_M |\partial_{x_1} u \wedge \partial_{x_2} u| \, dx_1 dx_2 \leq E(u,g)$$

with "=" iff u is conformal, i.e. iff $u^*g_N = \lambda \cdot g$, $\lambda \ge 0$.

Remark

(u,g) critical point of $E(\cdot,\cdot)$

\Leftrightarrow

u critical point of *Area*, more precisely, a branched minimal immersion (or constant).

Remark

(u,g) critical point of $E(\cdot,\cdot)$, i.e.

$$\begin{cases} 0 = \nabla_u E = -\tau_g(u) & \text{(harmonic)} \\ 0 = \nabla_g E = -\frac{1}{4} \text{Re}(\Phi(u,g)) & \text{(conformal)} \\ \Leftrightarrow \end{cases}$$

u critical point of *Area*, more precisely, a branched minimal immersion (or constant).

Here

•
$$\tau_g(u) = \text{tension} = \text{tr}_g(\nabla_g du) = \Delta_g u + A_g(u)(\nabla u, \nabla u)$$

•
$$\Phi(u,g) = \text{Hopf-differential} = \phi \cdot dz^2$$

Definition of the flow

First definition of a flow

$$\partial_t u = -\nabla_u E = \tau_g(u), \quad \partial_t g = -\nabla_g E = \frac{1}{4} \operatorname{Re}(\Phi(u,g))$$

BAD definition of a flow

$$\partial_t u = -\nabla_u E = \tau_g(u), \quad \partial_t g = -\nabla_g E = \frac{1}{4} \operatorname{Re}(\Phi(u,g))$$

since metric component is not well controlled.

BAD definition of a flow

$$\partial_t u = -\nabla_u E = \tau_g(u), \quad \partial_t g = -\nabla_g E = \frac{1}{4} \operatorname{Re}(\Phi(u,g))$$

Instead evolve by

$$\partial_t u = \tau_g(u)$$

$$\partial_t g = \frac{1}{4} \operatorname{Re}(P_g^{\mathcal{H}}(\Phi(u,g))))$$
(1)

for $P_g^{\mathcal{H}}$ the L^2 orthogonal projection

 $P_g^{\mathcal{H}}: \{\phi dz^2 \text{ quad. differential }\} \rightarrow \mathcal{H}(M,g) = \{\text{holomorphic quad. diff.}\}$ Remark: dim $(\mathcal{H}(M,g)) < \infty$

Why is this the right flow?

Claim

$$(1) =$$
 gradient flow of $E /$ symmetries

Why is this the right flow?

Claim

$$(1)={
m gradient}$$
 flow of E / symmetries.

"Proof": Symmetries of *E*:

• conformal invariance, $E(u,g) = E(u, \lambda \cdot g)$

 \Rightarrow restrict g to $\mathcal{M}_{\textit{c}}\text{, }\textit{c}=1,0,-1$ for genus $\gamma=0,1,\geq2$

Why is this the right flow?

Claim

(1) = gradient flow of E / symmetries.

"Proof": Symmetries of *E*:

- conformal invariance, $E(u,g) = E(u, \lambda \cdot g)$ \Rightarrow restrict g to \mathcal{M}_c , c = 1, 0, -1 for genus $\gamma = 0, 1, \ge 2$
- diffeomorphism invariance $E(u,g) = E(u \circ f, f^*g)$ \Rightarrow Identify $(u,g) \sim (u \circ f, f^*g)$, f diffeo

Claim

$$(1)={\sf gradient}$$
 flow of $E \ / \ {\sf symmetries}.$

"Proof": Symmetries of *E*:

- conformal invariance, $E(u,g) = E(u, \lambda \cdot g)$ \Rightarrow restrict g to \mathcal{M}_c , c = 1, 0, -1 for genus $\gamma = 0, 1, \ge 2$
- diffeomorphism invariance $E(u,g) = E(u \circ f, f^*g)$ \Rightarrow Identify $(u,g) \sim (u \circ f, f^*g), f$ diffeo

Consider L^2 -gradient flow of E on

$$\mathcal{A} = \{[(u,g)], u \in C^{\infty}(M,N), g \in \mathcal{M}_c\}.$$

Claim

$$(1)={\sf gradient}$$
 flow of $E \ / \ {\sf symmetries}.$

"Proof": Symmetries of *E*:

- conformal invariance, $E(u,g) = E(u, \lambda \cdot g)$ \Rightarrow restrict g to \mathcal{M}_c , c = 1, 0, -1 for genus $\gamma = 0, 1, \ge 2$
- diffeomorphism invariance $E(u,g) = E(u \circ f, f^*g)$ \Rightarrow Identify $(u,g) \sim (u \circ f, f^*g), f$ diffeo

Consider L^2 -gradient flow of E on

$$\mathcal{A} = \{ [(u,g)], u \in C^{\infty}(M,N), g \in \mathcal{M}_c \}.$$

Use L^2 orthogonal splitting

$$T_g \mathcal{M}_c = \{L_x g = \frac{\mathrm{d}}{\mathrm{d}t}|_{t=0} f_t^* g\} \oplus \mathsf{Re}(\mathcal{H}(g)).$$

Definition

Definition of our flow

Evolve a pair (u,g) of map $u: M \to N$ and metric $g \in \mathcal{M}_c$ by

$$\partial_t u = \tau_g(u)$$

$$\partial_t g = \frac{1}{4} \operatorname{Re}(P_g^{\mathcal{H}}(\Phi(u,g))))$$
((1))

describing the representative of the L^2 gradient flow of E on \mathcal{A} chosen such that $t \mapsto g(t)$ has minimal L^2 length.

Definition

Definition of our flow

Evolve a pair (u,g) of map u:M
ightarrow N and metric $g\in \mathcal{M}_c$ by

$$\partial_t u = \tau_g(u)$$

$$\partial_t g = \frac{1}{4} \operatorname{Re}(P_g^{\mathcal{H}}(\Phi(u,g))))$$
((1))

describing the representative of the L^2 gradient flow of E on \mathcal{A} chosen such that $t \mapsto g(t)$ has minimal L^2 length. **Relation to other flows**

 genus γ = 0: H(g) = {0} ⇒ (1) =harmonic map flow Global existence and asymptotic convergence (Struwe '85)

Definition

Definition of our flow

Evolve a pair (u,g) of map u:M
ightarrow N and metric $g\in \mathcal{M}_c$ by

$$\partial_t u = \tau_g(u)$$

$$\partial_t g = \frac{1}{4} \operatorname{Re}(P_g^{\mathcal{H}}(\Phi(u,g))))$$
((1))

describing the representative of the L^2 gradient flow of E on \mathcal{A} chosen such that $t \mapsto g(t)$ has minimal L^2 length. **Relation to other flows**

- genus γ = 0: H(g) = {0} ⇒ (1) =harmonic map flow Global existence and asymptotic convergence (Struwe '85)
- $\gamma = 1$: Ding-Li-Liu'06: "Modified gradient flow" of

$$(u, a, b) \mapsto E(u, g_{a,b}), a, b \in \mathbb{R}$$

agrees with (1)

Existence of solutions

Theorem 1 (R. '12)

To any $(u_0, g_0) \in H^1(M, N) \times \mathcal{M}_c$ there exists a (weak) solution (u, g) of

$$\partial_t u = \tau_g(u)$$

$$\partial_t g = \frac{1}{4} \operatorname{Re}(P_g^{\mathcal{H}}(\Phi(u,g))))$$
(1)

defined on [0, T)

Theorem 1 (R. '12)

To any $(u_0, g_0) \in H^1(M, N) \times \mathcal{M}_c$ there exists a (weak) solution (u, g) of

$$\partial_t u = \tau_g(u)$$

$$\partial_t g = \frac{1}{4} \operatorname{Re}(P_g^{\mathcal{H}}(\Phi(u,g))))$$
(1)

defined on [0, T) and $T < \infty$ only if (M, g(t)) degenerates in moduli space as $t \nearrow T$, i.e.

 $\ell(g(t)) \rightarrow 0 \text{ as } t \nearrow T,$

 $\ell(g)$ =length of shortest closed geodesic in (M, g).

Theorem 1 (R. '12)

To any $(u_0, g_0) \in H^1(M, N) \times \mathcal{M}_c$ there exists a (weak) solution (u, g) of

$$\partial_t u = \tau_g(u)$$

$$\partial_t g = \frac{1}{4} \operatorname{Re}(P_g^{\mathcal{H}}(\Phi(u,g))))$$
(1)

defined on [0, T) and $T < \infty$ only if (M, g(t)) degenerates in moduli space as $t \nearrow T$, i.e.

$$\ell(g(t)) \rightarrow 0$$
 as $t \nearrow T$,

 $\ell(g)$ =length of shortest closed geodesic in (M, g). This solution is smooth away from finitely many times

- at which finitely many harmonic spheres "bubble off"
- across which g remains $C_t^{0,1}C_x^{\infty}$.

$$\partial_t u = \tau_g(u) \partial_t g = \frac{1}{4} \operatorname{Re}(P_g^{\mathcal{H}}(\Phi(u,g))))$$
(1)

$$\partial_t u = \tau_g(u) \partial_t g = \frac{1}{4} \operatorname{Re}(P_g^{\mathcal{H}}(\Phi(u,g))))$$
(1)

Important to understand dependence on g of

 $P_g^{\mathcal{H}}$: {quad. diff.} \rightarrow {holomorphic. quad. diff.}.

$$\partial_t u = \tau_g(u)$$

$$\partial_t g = \frac{1}{4} \operatorname{Re}(P_g^{\mathcal{H}}(\Phi(u,g))) = P_g(\operatorname{Re}(\frac{1}{4}\Phi(u,g)))$$
(1)

Important to understand dependence on g of

$$P_g^{\mathcal{H}}$$
: {quad. diff.} \rightarrow {holomorphic. quad. diff.}.

Use

• Alternative point of view

$$\mathsf{Re}(\mathcal{H}(M,g)) = \{k \in \mathsf{Sym}^{(0,2)} : \mathrm{tr}_g(k) = 0 = \mathsf{div}_g(k)\}$$

$$\partial_t u = \tau_g(u)$$

$$\partial_t g = \frac{1}{4} \operatorname{Re}(P_g^{\mathcal{H}}(\Phi(u,g))) = P_g(\operatorname{Re}(\frac{1}{4}\Phi(u,g)))$$
(1)

Important to understand dependence on g of

$$P_g^{\mathcal{H}}$$
: {quad. diff.} \rightarrow {holomorphic. quad. diff.}.

Use

Alternative point of view

$$\mathsf{Re}(\mathcal{H}(M,g)) = \{k \in \mathsf{Sym}^{(0,2)} : \mathrm{tr}_g(k) = 0 = \mathsf{div}_g(k)\}$$

• "Explicit" formula for P_g , given in terms of solutions of elliptic PDE's to be solved on the varying surfaces (M, g)

$$\partial_t u = \tau_g(u)$$

$$\partial_t g = \frac{1}{4} \operatorname{Re}(P_g^{\mathcal{H}}(\Phi(u,g))) = P_g(\operatorname{Re}(\frac{1}{4}\Phi(u,g)))$$
(1)

Important to understand dependence on g of

$$P_g^{\mathcal{H}}$$
: {quad. diff.} \rightarrow {holomorphic. quad. diff.}.

Use

Alternative point of view

$$\mathsf{Re}(\mathcal{H}(M,g)) = \{k \in \mathsf{Sym}^{(0,2)} : \mathrm{tr}_g(k) = 0 = \mathsf{div}_g(k)\}$$

- "Explicit" formula for P_g , given in terms of solutions of elliptic PDE's to be solved on the varying surfaces (M, g)
- Ideas from Teichmüller theory (slice theorem) about the structure of the Banachmanifold *M*^s₋₁ of *H*^s hyperbolic metrics.

Key-lemma to prove existence of solutions

The map $g \mapsto P_g$ is locally Lipschitz-continuous on the Banachmanifold \mathcal{M}_{-1}^s in the sense that for every tensor $k \in Sym^{(0,2)}$

$$\|(P_{g_1}-P_{g_2})(k)\|_{H^s} \leq C \cdot \|g_1-g_2\|_{H^s} \cdot \|k\|_{L^1}.$$

Theorem 2 (R.+Topping '12)

If the solution (u, g) of Theorem 1 satisfies

$$\inf_{t\in[0,\infty)}\ell(g(t))>0$$

(2)

then there are $t_i \rightarrow \infty$ and diffeomorphisms f_i

$$f_i^*(u(t_i), g(t_i)) \rightarrow (u_\infty, g_\infty)$$

Theorem 2 (R.+Topping '12)

If the solution (u, g) of Theorem 1 satisfies

$$\inf_{t\in[0,\infty)}\ell(g(t))>0$$

(2)

then there are $t_i \rightarrow \infty$ and diffeomorphisms f_i

$$f_i^*(u(t_i), g(t_i)) \to (u_\infty, g_\infty)$$

where

• u_∞ is a branched minimal immersion or constant

Theorem 2 (R.+Topping '12)

If the solution (u, g) of Theorem 1 satisfies

$$\inf_{t\in[0,\infty)}\ell(g(t))>0$$

(2)

then there are $t_i \rightarrow \infty$ and diffeomorphisms f_i

$$f_i^*(u(t_i), g(t_i)) \to (u_\infty, g_\infty)$$

where

- $\bullet~u_\infty$ is a branched minimal immersion or constant
- u_{∞} has the same action on π_1 as u_0 ,

$$u_*:\pi_1(M)\ni [\sigma]\mapsto [u\circ\sigma]\in\pi_1(N)$$

Can solutions degenerate?

Not if they are topologically non-degenerate:

Theorem 3 (R.+Topping '12)

If $(u_0)_*$ is injective (i.e. u_0 incompressible) then the flow (1) is global and

$$\ell(g(t)) \geq \delta(E_0, N) > 0$$

 \Rightarrow From Theorem 2 we recover result of Sacks-Uhlenbeck and Schoen-Yau on the existence of branched minimal immersions with given injective action on π_1 .

Outlook: Flowing general initial maps

Degeneration (at least at infitite time) can/does happen.

Outlook: Flowing general initial maps

Degeneration (at least at infitite time) can/does happen.

Theorem 4 (R.+Topping+Zhu) (in preparation)

If the solution of Theorem 1 is global, but

 $\ell(g(t)) o 0$ as $t o \infty$

Outlook: Flowing general initial maps

Degeneration (at least at infitite time) can/does happen.

Theorem 4 (R.+Topping+Zhu) (in preparation)

If the solution of Theorem 1 is global, but

$$\ell(g(t)) o 0$$
 as $t o \infty$

then there exist $t_i \to \infty$, diffeomorphisms $f_i : \Sigma \to M \setminus \bigcup_j \sigma_i^j$ such that

- f_i^{*}(M, g(t_i)) converges to a punctured hyperbolic surface
 (Σ, h)
- $u(t_i) \circ f_i$ converges to a limit map $u_{\infty} : \Sigma \to (N, g_N)$ which is, on each connected component of Σ , a branched minimal immersion (or constant)

$$\frac{\mathrm{d}}{\mathrm{d}t}E(t) = -\int |\tau_g(u)|^2 + c |P_g(\Phi(u,g))|^2 dv_g.$$

$$\frac{\mathrm{d}}{\mathrm{d}t}E(t) = -\int |\tau_g(u)|^2 + c |P_g(\Phi(u,g))|^2 dv_g.$$

Thus if solution is global, there is $t_i \rightarrow \infty$ such that

- $au_{g(t_i)}(u(t_i))
 ightarrow 0 \rightsquigarrow$ harmonic limit map u_{∞}
- $P_g(\Phi(u,g)(t_i)) \rightarrow 0$

$$\frac{\mathrm{d}}{\mathrm{d}t}E(t) = -\int |\tau_g(u)|^2 + c |P_g(\Phi(u,g))|^2 \, dv_g.$$

Thus if solution is global, there is $t_i \rightarrow \infty$ such that

- $au_{g(t_i)}(u(t_i))
 ightarrow 0 \rightsquigarrow$ harmonic limit map u_{∞}
- $P_g(\Phi(u,g)(t_i)) \rightarrow 0$

Problem is not to prove that $\Phi(u_{\infty}, g_{\infty})$ is holomorphic,

$$\frac{\mathrm{d}}{\mathrm{d}t}E(t) = -\int |\tau_g(u)|^2 + c |P_g(\Phi(u,g))|^2 dv_g.$$

Thus if solution is global, there is $t_i \rightarrow \infty$ such that

- $au_{g(t_i)}(u(t_i))
 ightarrow 0 \rightsquigarrow$ harmonic limit map u_{∞}
- $P_g(\Phi(u,g)(t_i)) \rightarrow 0$

Problem is not to prove that $\Phi(u_{\infty}, g_{\infty})$ is holomorphic, BUT

maps converge only **weakly** in H^1 and Φ is quadratic in ∇u $\Rightarrow P_g(\Phi(u,g)(t_i)) \rightarrow 0$ does **not** imply $P_{g_{\infty}}(\Phi(u_{\infty},g_{\infty})) = 0$

Poincaré estimate for quadratic differentials (R.-Topping '12)

For

- a closed hyperbolic surface (M,g)
- every quadratic differential Ψ on (M,g)

$$\|\Psi - P_g^{\mathcal{H}}(\Psi)\|_{L^1(M,g)} \leq C \cdot \|\partial_{\bar{z}}\Psi\|_{L^1(M,g)}$$

Uniform Poincaré estimate for quadratic differentials (R.-Topping '12)

For any genus bound $\Gamma \in \mathbb{N}$ there exists $\mathit{C} < \infty$ such that for

- every closed hyperbolic surface (M, g)
- every quadratic differential Ψ on (M,g)

$$\|\Psi - \mathsf{P}_g^{\mathcal{H}}(\Psi)\|_{L^1(M,g)} \leq C \cdot \|\partial_{\overline{z}}\Psi\|_{L^1(M,g)}$$

Uniform Poincaré estimate for quadratic differentials (R.-Topping '12)

For any genus bound $\Gamma \in \mathbb{N}$ there exists $\mathit{C} < \infty$ such that for

- every closed hyperbolic surface (M, g)
- every quadratic differential Ψ on (M,g)

$$\|\Psi - \mathcal{P}_g^{\mathcal{H}}(\Psi)\|_{L^1(M,g)} \leq C \cdot \|\partial_{\overline{z}}\Psi\|_{L^1(M,g)}$$

 ${\boldsymbol{C}}$ depends on

- topology (i.e. genus)
- but NOT on the geometry (diameter, injectivity radius,...)

of the surface.