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Define a good geometric flow that changes maps
u: M? — (N, gy) into minimal surfaces.

Idea: Follow gradient flow to find critical points
— > NEED

@ Global solutions

@ Control on possible singularities

Result: A flow with elements in common with
e mean curvature flow (looking for minimal surfaces)

@ harmonic map heat flow (known singularity structure)
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Fix
o domain: M? closed, orientable surface (of genus v € Np)

o target: (N, gy) compact manifold, w.l.o.g. «— R¥
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Fix
o domain: M? closed, orientable surface (of genus v € Np)
o target: (N, gy) compact manifold, w.l.o.g. «— R¥
For the two variables
ou:M—N
@ g Riemannian metric on domain M

consider )
2
E(u,g):= 2//\/1 |duly dvg.
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Fix
o domain: M? closed, orientable surface (of genus v € Np)
o target: (N, gy) compact manifold, w.l.o.g. «— R¥

For the two variables
ou:M—N

@ g Riemannian metric on domain M

consider )
2
E(u,g):= 2//\/1 |duly dvg.
Remark
Area(u) = / |0y u A Oy u| dxrdxo < E(u, g)
M
with “=" iff u is conformal, i.e. iff u* gy =A-g, A > 0.
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Area <+ Energy

(u, g) critical point of E(-, )

=

u critical point of Area, more precisely, a branched minimal
immersion (or constant).
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Area <+ Energy

(u, g) critical point of E(-,), i.e.

0 = VuE=—74(v) (harmonic)
0 = VgE=—1Re(®(u,g)) (conformal)

=

u critical point of Area, more precisely, a branched minimal
immersion (or constant).

Here
o 7g(u) = tension = try(Vydu) = Agu + Ag(u)(Vu, Vu)
o ®(u,g) = Hopf-differential = ¢ - dz?
o z = x + iy complex coordinate of (M, g), g = X - (dx? + dy?)
° = |U><|2 - ‘”y|2 — 2i{ux, uy)
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Definition of the flow

First definition of a flow

1
et = —VuE =74(u), Oig = —VgE = JRe(®(u,g))
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Definition of the flow

BAD definition of a flow
1
Oy = =V ,E =715(u), 0ig=—-VgE= ZRe(dD(u,g))

since metric component is not well controlled.
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Definition of the flow

BAD definition of a flow
Oy = =V ,E =715(u), 0ig=—-VgE= %Re(dD(u,g))
Instead evolve by
Oru = 14(u)
0 = Re(P(0(15))))
for Pg,{ the L2 orthogonal projection
Pg,{ - {¢pdz? quad. differential } — H(M, g) = {holomorphic quad. diff.}

Remark: dim(H(M, g)) < co
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Why is this the right flow?

(1) = gradient flow of E / symmetries.
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Why is this the right flow?

(1) = gradient flow of E / symmetries.

“Proof”: Symmetries of E:

e conformal invariance, E(u,g) = E(u, A - g)
= restrict g to M., c=1,0,—1 for genus vy =0,1,> 2
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Why is this the right flow?

(1) = gradient flow of E / symmetries.

“Proof”: Symmetries of E:

e conformal invariance, E(u,g) = E(u, A - g)
= restrict g to M., c=1,0,—1 for genus vy =0,1,> 2

e diffeomorphism invariance E(u,g) = E(uo f,f*g)
= ldentify (u,g) ~ (uof,f*g), f diffeo

Consider [2-gradient flow of E on

A={[(v,g)l,uc C*(M,N), g € Mc}.
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Why is this the right flow?

(1) = gradient flow of E / symmetries.

“Proof”: Symmetries of E:

e conformal invariance, E(u,g) = E(u, A - g)
= restrict g to M., c=1,0,—1 for genus vy =0,1,> 2

e diffeomorphism invariance E(u,g) = E(uo f,f*g)
= ldentify (u,g) ~ (uof,f*g), f diffeo

Consider [2-gradient flow of E on
A=A{[(u,8)],ue C(M,N),g € Mc}.

Use L? orthogonal splitting

d x
TgMc = {Lxg = a|t:0ft g} D Re(H(g))
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Definition of our flow

Evolve a pair (u,g) of map u: M — N and metric g € M, by
Oru = 14(u)

1
0 = Re(PL(®(u,8)))) e

describing the representative of the L? gradient flow of E on A
chosen such that t + g(t) has minimal L? length.
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Oru = 14(u)

1
0 = Re(PL(®(u,8)))) e

describing the representative of the L? gradient flow of E on A
chosen such that t + g(t) has minimal L? length.
Relation to other flows
e genus v =0: H(g) = {0} = (1) =harmonic map flow
Global existence and asymptotic convergence (Struwe '85)
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Definition of our flow

Evolve a pair (u,g) of map u: M — N and metric g € M, by
Oru = 14(u)

1
0 = Re(PL(®(u,8)))) e

describing the representative of the L? gradient flow of E on A
chosen such that t + g(t) has minimal L? length.
Relation to other flows
e genus v =0: H(g) = {0} = (1) =harmonic map flow
Global existence and asymptotic convergence (Struwe '85)
o v = 1: Ding-Li-Liu'06: "Modified gradient flow” of

(u,a,b) — E(u,gap),a,beR

agrees with (1)
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Existence of solutions

Theorem 1 (R. '12)

To any (uo, go) € HY(M, N) x M. there exists a (weak) solution
(u, g) of

Oru = 14(u)

1
01 = LRe(PE(0(u,0)) =

defined on [0, T)
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Existence of solutions

Theorem 1 (R. '12)

To any (uo, go) € HY(M, N) x M. there exists a (weak) solution
(u, g) of

Oru = 14(u)
0 = Re(PL(®(u,8))))

defined on [0, T) and T < oo only if (M, g(t)) degenerates in
moduli space as t /T, i.e.

l(g(t)) >0ast 7T,

(1)

{(g)=length of shortest closed geodesic in (M, g).
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Existence of solutions

Theorem 1 (R. '12)

To any (uo, go) € HY(M, N) x M. there exists a (weak) solution
(u, g) of

Oru = 14(u)
0 = Re(PL(®(u,8))))

defined on [0, T) and T < oo only if (M, g(t)) degenerates in
moduli space as t /T, i.e.

l(g(t)) >0ast 7T,

(1)

{(g)=length of shortest closed geodesic in (M, g).
This solution is smooth away from finitely many times

@ at which finitely many harmonic spheres “bubble off”

. . 0,1
@ across which g remains C;"~ CZ°.
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A few words on the proof...

Oru = T4(u)

1
Oig = %Re(P;‘(q’(Uag))))) .
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A few words on the proof...

Oru = T4(u)

1
Org = ;Re(Pg'(®(u,£)))))
Important to understand dependence on g of

H . - - .
P;" : {quad. diff.} — {holomorphic. quad. diff.}.

(1)
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A few words on the proof...

Oru = Tg(u)

1 1
o0ig = ZRe(P;{(CD(u,g)))) = Pg(Re(ZCD(u,g)))
Important to understand dependence on g of

H . - - .
P;" : {quad. diff.} — {holomorphic. quad. diff.}.

(1)

Use
@ Alternative point of view

Re(H#(M, g)) = {k € Sym©®2) - tr (k) = 0 = div,(k)}
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A few words on the proof...
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1 1
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Important to understand dependence on g of
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P;" : {quad. diff.} — {holomorphic. quad. diff.}.

(1)

Use
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e “Explicit” formula for Pg, given in terms of solutions of
elliptic PDE’s to be solved on the varying surfaces (M, g)
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A few words on the proof...

Oru = Tg(u)

1 1
o0ig = ZRe(P;{(CD(u,g)))) = Pg(Re(ZCD(u,g)))
Important to understand dependence on g of

H . - - .
P;" : {quad. diff.} — {holomorphic. quad. diff.}.

(1)

Use
@ Alternative point of view

Re(H#(M, g)) = {k € Sym©®2) - tr (k) = 0 = div,(k)}

e “Explicit” formula for Pg, given in terms of solutions of
elliptic PDE’s to be solved on the varying surfaces (M, g)

@ ldeas from Teichmiiller theory (slice theorem) about the
structure of the Banachmanifold M? ; of H® hyperbolic
metrics.
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A few words on the proof...

Key-lemma to prove existence of solutions

The map g — Py is locally Lipschitz-continuous on the
Banachmanifold M? ; in the sense that for every tensor
k € Sym(©2)

1(Pey — Peo)(K)ll s < C - llgr — goll s - [[l|2-
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Asymptotics

Theorem 2 (R.+Topping '12)

If the solution (u, g) of Theorem 1 satisfies

nf_ ((&(£)) >0 @)

then there are t; — oo and diffeomorphisms f;

f;'*(u(ti)vg(ti)) - (uOOagOO)
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Asymptotics

Theorem 2 (R.+Topping '12)

If the solution (u, g) of Theorem 1 satisfies

nf_ ((&(£)) >0 @)

then there are t; — oo and diffeomorphisms f;

f;'*(u(ti)vg(ti)) - (uOOagOO)

where

@ Uy, is a branched minimal immersion or constant
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Asymptotics

Theorem 2 (R.+Topping '12)

If the solution (u, g) of Theorem 1 satisfies

nf_ ((&(£)) >0 @)

then there are t; — oo and diffeomorphisms f;

f;'*(u(ti)vg(ti)) - (uOOagOO)

where
@ Uy, is a branched minimal immersion or constant
@ Uy, has the same action on 71 as up,
uy : m(M) 3 [o] = [uo o] € m(N)
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Can solutions degenerate?
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Can solutions degenerate?

Not if they are topologically non-degenerate:

Theorem 3 (R.+Topping '12)
If (uo)« is injective (i.e. up incompressible) then the flow (1) is
global and

l(g(t)) > 0(Eo, N) >0

= From Theorem 2 we recover result of Sacks-Uhlenbeck and
Schoen-Yau on the existence of branched minimal immersions with
given injective action on 7.
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QOutlook: Flowing general initial maps

Degeneration (at least at infitite time) can/does happen.
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QOutlook: Flowing general initial maps

Degeneration (at least at infitite time) can/does happen.

Theorem 4 (R.4+Topping+Zhu) (in preparation)

If the solution of Theorem 1 is global, but

lg(t)) >0 ast— oo
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QOutlook: Flowing general initial maps

Degeneration (at least at infitite time) can/does happen.

Theorem 4 (R.4+Topping+Zhu) (in preparation)
If the solution of Theorem 1 is global, but

lg(t)) >0 ast— oo

then there exist t; — oo, diffeomorphisms f; : £ — M\ chrf-’ such
that
o f*(M,g(t;)) converges to a punctured hyperbolic surface
(X, h)
@ u(t;) o f; converges to a limit map us : X — (N, gn) which is,
on each connected component of ¥, a branched minimal
immersion (or constant)
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A few words on the proof of the asymptotics

Energy decays according to

d

EE(t) = _/|7'g(u)|2 + ¢ |Pg(®(u, ))I” dvg.
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A few words on the proof of the asymptotics

Energy decays according to

d
EO = [ (@) +  Po(®(u. ) vy
Thus if solution is global, there is t; — oo such that

® Tg(¢)(u(ti)) — 0 ~ harmonic limit map ux

° Pg(®(u,8)(ti)) = 0
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A few words on the proof of the asymptotics

Energy decays according to

d
EO = [ (@) +  Po(®(u. ) vy
Thus if solution is global, there is t; — oo such that

® Tg(¢)(u(ti)) — 0 ~ harmonic limit map ux
o Pg(®(u,g)(ti)) =0

Problem is not to prove that ®(us, 8 ) is holomorphic,
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A few words on the proof of the asymptotics

Energy decays according to

EO = [ (@) +  Po(®(u. ) vy
Thus if solution is global, there is t; — oo such that
® Tg(¢)(u(ti)) — 0 ~ harmonic limit map ux
o Pg(®(u,g)(ti)) =0
Problem is not to prove that ®(us, 8 ) is holomorphic,
BUT
maps converge only weakly in H* and ® is quadratic in Vu

= Pg(®(u,g)(ti)) — 0 does not imply Py (P(Uso,85)) =0
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One key lemma

Poincaré estimate for quadratic differentials (R.-Topping '12)

For
@ a closed hyperbolic surface (M, g)
@ every quadratic differential W on (M, g)

W — PR gy < C- 102V 13 (wmg)
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One key lemma

Uniform Poincaré estimate for quadratic differentials (R.-Topping

'12)
For any genus bound I € N there exists C < oo such that for

@ every closed hyperbolic surface (M, g)
@ every quadratic differential W on (M, g)

IV — PEW) |2 (mg) < C - 102W |13 (ang)
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One key lemma

Uniform Poincaré estimate for quadratic differentials (R.-Topping

'12)
For any genus bound ' € N there exists C < co such that for

@ every closed hyperbolic surface (M, g)
@ every quadratic differential W on (M, g)

IV = PRl g) < € 102V 112 (w5

C depends on
@ topology (i.e. genus)
@ but NOT on the geometry (diameter, injectivity radius,..)

of the surface.
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