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Hilbert 6th problem

In Hilbert’s 1900 address to ICM in Paris, he proposed the
problem for the limiting process which lead from the atomistic
view to the laws of motion of continua. Passage from the kinetic
Boltzmann equation for a rarefied gas to the continuum Euler
equations of compressible gas dynamics as the Knudsen
number ε→ 0.

As of this moment, success in the problem has been limited to
cases where the limiting continuum equations possess smooth
solutions, i.e. before shock formation. (An excellent up to date
survey may be found in book of L. St. Raymond).
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Is there an inherent mathematical reason that
makes Hilbert’s 6th problem unattainable and
can we pinpoint this reason in a simple
mathematical form ?.
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The Chapman-Enskog expansion
• The Boltzmann equation:

∂t f + ξ · ∇f =
Q(f , f )

ε
(1)

where f = f (t , x , ξ) is the probability of finding a molecule of gas
at point x ∈ R3, at time t , moving with velocity ξ ∈ R3. We note
each ξi varies from −∞ to∞ and hence particles are allowed to
have infinite velocities. The function f determines macroscopic
fluid variables of density, momentum and temperature via its
moments. Denote the density, momentum and temperature by
ρ, ρu and Θ. The Chapman–Enskog expansion is a formal
power series in the Knudsen number ε > 0 for the function f in
terms of these macroscopic varies (which we denote by M).

fCE (M, ξ) = f (0)(M, ξ) + εf (1)(M, ξ) + ε2f (2)(M, ξ) + . . . (2)
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f (0)(M, ξ) is the usual local Maxwellian. Truncation at 0th order
yields the balance laws of mass, momentum and energy for an
elastic fluid, i.e. compressible gas dynamics of an ideal gas.
Truncation at order ε yields the Navier–Stokes–Fourier
equations, truncation at order ε2 yields the Burnett equations.
Truncation at order yields the super-Burnett equations and so
forth. The success of the Chapman–Enskog expansion to
deliver the well known Navier-Stokes-Fourier theory at order
has motivated many to view the Navier–Stokes–Fourier theory
as fundamental in computing shock structure. But as seen from
a simple one dimensional analogy, this justification is
questionable.
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If one wishes to determine the shock structure for the scalar
conservation law

ut + uux = 0

by imposition of a viscous term one gets Burgers’ equation:

ut + uux = εuxx .
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Look for travelling wave solutions of the Burgers’ equation

u = u
(x − ct

ε

)
and recover the ordinary differential equation x

−cu′ + uu′ = u′′.

Thus in any study of non-smooth solutions to our original scalar
conservation laws via imposition of higher gradient terms we
see there is no concept of small derivative terms, i.e. all terms
are a priori the same magnitude.
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The ε has been scaled out ! Hence any study of non-smooth
hydrodynamics via a truncation of the Chapman–Enskog
expansion, while convenient is an illegitimate use of the
Boltzmann equation.

"VATICINIUM EX EVENTU"
( A pseudo-prophecy written after the event)

James Kugel, How to read the bible, ( 2007).

Nevertheless the Chapman–Enskog expansion is an appealing
tool since it allows us to cast Hilbert’s question in the language
and tools of partial differential equations.
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But if truncations of C-E are illegitimate for non-smooth
solutions of the fluid equations that leaves us only one
recourse, i.e. summation of the entire Champan-Enskog
expansion. This is exactly what A. Gorban and I. Karlin have
done in a remarkable series of papers.
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Results of Gorban and Karlin

Take the first 13 moments of the Boltzmann equations and then
close the system by Grad’s closure rule for f .

• The Grad’s 13 moment system linearized about the rest state:

∂tρ = −∇ · u,
∂tu = −∇ρ−∇Θ−∇ · σ,
∂t Θ = −2

3
(∇ · u +∇ · q) ,

∂tσ = −
(

(∇u) + (∇u)T − 2
3
∇ · u I

)
−2

3

(
(∇q) + (∇q)T − 2

3
∇ · q I

)
− σ,

∂tq = −5
3
∇Θ−∇ · σ − 2

3
q ,

p = ρ+ Θ.



PROLOGUE THE CHAPMAN–ENSKOG EXPANSION RESULTS OF GORBAN AND KARLIN EPILOGUE

• A simplified10 moment theory in one space dimension:

∂tp = −5
3
∂xu,

∂tu = −∂xp − ∂xσ,

∂tσ = −4
3
∂xu − σ

ε
.

(Rescaled x = x ′/ε, t = t ′/εand then dropped the prime).

The role of the Knudsen number ε becomes apparent, i.e. it is
an ordering tool for the Chapman–Enskog expansion. Write the
C-E expansion

σCE = εσ(0) + ε2σ(1) + ε3σ(2) + . . .

where σ(n) depend on p, u and their space derivatives.

σCE = −4
3

(
ε∂xu + ε2∂xp +

ε3

3
∂3

x u + . . .

)
.
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Truncation as orders ε, ε2, ε3, yields dispersion relations

• (Euler order):

ω± = −2
3

k2 ± i |k |
3

√
4k2 − 15.

• (Navier-Stokes order):

ω± = −2
3

k2 ± i |k |
3

√
8k2 + 15.

• (Burnett order):

ω± = −2
9

k2(k2 − 3)± i |k |
9

√
4k6 − 24k4 − 72k2 − 135.

• (Super-Burnett order): we have a Bobylev instability for k2 > 3, k
being the frequency in Fourier space.
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The goal of Gorban and Karlin was summation, NOT
truncation.

Take the Fourier transform of σCE and sum the series.

σ̂CE =
∞∑

n=0

−ikan(−k2)nû +
∞∑

n=0

−k2bn(−k2)np̂

= −ikA(k2)û − k2B(k2)p̂

where

A(k2) =
∞∑

n=0

−ikan(−k2)n, B(k2) =
∞∑

n=0

bn(−k2)n.
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The good fortune in this example is that the sums A and B are
related via the formula

A =
B

1− k2B
,

and that if B is written as C = k2B, then C satisfies the
fundamental cubic equation

−5
3

(1− C)2
(

C +
4
5

)
− C

k2 = 0. (3)

Eq. (3) has one real and two complex roots. The real root is the
one of interest to us and is negative for k2 > 0, C(0) = 0, and
monotone decreasing in k2, with asymptotic limit C → −4/5 as
k2 →∞.
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Hence A, B are known functions A,B < 0 for k2 > 0.

In Fourier space, the hydrodynamics becomes

p̂t =
5
3

ik û,

ût = ik p̂ + ik(−ikA(k2)û(t , k)− k2B(k2)p̂),

We set
p̂(t , k) = eωtP(k), û(t , k) = eωtU(k).

Then P and U satisfy −ω
5
3

ik

ik − ik3B k2A− ω


 P

U

 =

 0

0

 .
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Set the determinant of the coefficient matrix to zero and find the
dispersion relation (spectrum in Fourier space)

ω2 − ωk2A +
5
3

(k2 − k4B) = 0, i.e.,

ω =
1
2

(
C

1− C

)
± |k |

((
C

1− C

)2 1
k2 −

20
3

(1− C)

)1/2

Recall C satisfies the cubic

−5
3

(C − 1)2
(

C +
4
5

)
=

C
k2 ,

and hence −5
3C
(
C + 4

5

)
= C2

(1−C)2
1
k2 and the formula for ω

becomes

ω =
1
2

(
C

C − 1

)
± i |k |

(
5C2 − 16C + 20

3

)1/2

,

where we note that the quadratic form 5C2 − 16C + 20 is
always positive. Since C → −4

5 as |k | → ∞ we see Reω → −2
9

as |k | → ∞
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A sketch of the spectrum is given in Figure 1.

Im ω

Re ω

|k| → ∞
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One issue not addressed by Gorban and Karlin in their papers
was derivation of an entropy equality:

1
2
∂t

(
3
5
|p̂|2 + |û|2

)
− ik(¯̂pû + p̂ ¯̂u)

= k2A(k2)|û|2 + ik ¯̂u(−k2B(k2)p̂).

But now use the relation 3
5

¯̂p = ik c̄ to write the equality as

1
2
∂t

(
3
5
|p̂|2 + |û|2 − 3

5
k2B(k2)|p̂|2)

)
,

−ik(¯̂pû + p̂ ¯̂u) = k2A(k2)|û|2.
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This is the ‘entropy equality in Fourier space. Notice the
entropy 1

2

(3
5 |p̂|+ |û|2 − 3

5k2B(k2)
)

and the dissipation
k2A(k2)|û|2 each have the desired signs (positive and negative,
respectively). Since A and B are both negative for k 6= 0,
integration yields

1
2
∂t

∫ ∞
−∞

3
5
|p̂|2 + |û|2dk +

1
2
∂t

∫ ∞
−∞
−3

5
k2B(k2)|p̂|2dk

+

∫ ∞
−∞

(
∂̂p
∂x

)
û +

(
∂̂u
∂x

)
p̂dk

=

∫ ∞
−∞

k2A(k2)|û|dk
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or with an application of Parseval’s identity

1
2
∂t

∫ ∞
−∞

3
5
|p|2 + |u|2dx +

1
2
∂t

∫ ∞
−∞
−3

5
k2B(k2)|p̂|2dk

=

∫ ∞
−∞

k2A(k2)|û|2dk .

The term ∫ ∞
−∞
−3

5
k2B(k2)|p̂|2dk

represents a non-local version of the capillarity, where as the
term ∫ ∞

−∞
k2A(k2)|û|2dk

is a non-local version of the viscous dissipation.



PROLOGUE THE CHAPMAN–ENSKOG EXPANSION RESULTS OF GORBAN AND KARLIN EPILOGUE

• Energy identity

1
2
∂t

∫ ∞
−∞

3
ρ
|p|2 + |u|2dx +

1
2
∂t

∫ ∞
−∞
−3
ρ

k2B(k2)|p̂|2dk

=

∫ ∞
−∞

k2A(k2)|û|2dk .

Since A, B are negative for k2 > 0 we can interpret the above
energy identity as

∂t (MECHANICAL ENERGY) + ∂t (CAPILLARITY ENERGY)

= VISCOUS DISSIPATION

just as given in Korteweg’s theory of capillarity. Exact
summation of the Chapman–Enskog expansion has yielded a
non-local version of Korteweg’s theory and not Navier–Stokes
theory.
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Why is the theory non-local?

Non-locality not because of any physical mechanism but
because of the truncatio n of our moment expansion. In fact
Boillat and Ruggeri have shown that maximum waves speeds
for moment truncation satisfy the inequality

V 2
max ≥

6
5

√
5
3

k
m

Θ(N − 1/2)

where N = number of moments.
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Hence, we expect as the number of moments goes to infinity
our non-local Korteweg theory would approach a linearization
of Korteweg’s local theory:

∂tρ+ ∂i(ρui) = 0,
∂t(ρui) + ∂j(ρuiuj) = ∂jTij ,

where the Cauchy stress for Korteweg’s theory is

T = T E + T V + T K ,
T E

ij = −ρψ′(ρ)δij , ρ2ψ′(ρ) = p(ρ),
T V

ij = λ(trD)δij + 2µDij

Dij =
1
2
(∂jui + ∂iuj) ,

λ = −2
3
µ, µ > 0,

T K
ij = αρ∂i(ρ∂jρ)− αρ∂iρ∂jρ, α > 0.
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• The full nonlinear energy balance equation:

∂t

(
1
2
ρ|u|2 + ρψ(ρ) +

α

2
ρ∂iρ∂iρ

)
+ ∂j

[
uj

(
1
2
ρ|u|2 + ρψ(ρ)− α

2
ρ∂iρ∂iρ

)]
+∂j [αρ(∂tρ∂jρ+ ui∂iρ∂jρ)] + ∂j(uiTij) + µ(∂j(ui∂iuj)− ∂i(ui∂juj))

= −(λ+ µ)(∂iui)
2 − µ(∂jui)(∂jui)

≤ 0.

(Here repeated indices imply summation.)
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Summary

Gorban and Karlin’s summation has shown us that we may
reasonably conjecture that the sum of Chapman–Enskog
expansion will yield a local version of Korteweg’s theory of
capillarity. Implication of Gorban and Karlin’s summation for
Hilbert’s 6th problem. The whole issue may be seen in the
energy balance. If we put the Knudsen number scaling into
(reference "3.2") the coefficient α is actually a term α0ε

2 and to
recover the classical balance of energy of the Euler equation
would require the sequence

ε2ρε∂iρ
ε∂iρ

ε → 0

in the sense of distributions of ε→ 0
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This would require a strong interaction with viscous dissipation.
The natural analogy is given by the use of the KdV-Burgers
equation:

ut + uux = εuxx − K ε2uxxx , (4)

where at a more elementary level we see the competition
between viscosity and capillarity. The result is known but far
from trivial. In the absence of viscosity we have the KdV
equation

ut + uux = −K ε2uxxx . (5)
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and we know from the results of Lax and Levermore that as
ε→ 0, solution of (5) will not approach solution of the
conservation law

ut + uux = 0, (6)

after the breakdown time of smooth solutions of (6). On the
other hand, addition of viscosity which is sufficiently strong, i.e.
K sufficiently small in (4) will allow passage as ε→ 0 to a
solution of (6). This has been proven in the paper of M.E.
Schonbek.
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Are we in the Lax-Levermore case (5) or the Schonbek case (4)
with K sufficiently small ? Rewrite hydrodynamics as the
second order equation

3
5

p̂tt + k2p̂ + k2
(
−A(k2)

(
3
5

)
p̂t − k2B(k2)p̂

)
= 0

and then attempt to write it in factored form(
3
5
∂

∂t
+ µ1(k)

)(
∂

∂t
+ µ2(k)

)
p̂ = −k2p̂.
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A comparison yields

µ1(k) +
3
5
µ2(k) = −3

5
k2A(k2)

µ1(k)µ2(k) = −k4B(k2)

Define v̂ by the formula

∂p̂
∂t

+ µ2(k)p̂ = ik v̂

system now takes the form

3
5
∂t v̂ = ik p̂ − µ1(k)v̂

∂t p̂ = ik v̂ − µ2(k)p̂
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or in physical space-time

3
5
∂tv = −∂xp − 1√

2π

∫ ∞
−∞

eikxµ1(k)v̂(k , t)dk ,

∂tp = −∂xp − 1√
2π

∫ ∞
−∞

eikxµ2(k)p̂(k , t)dk .

Formulas for µ1(k), µ2(k) are

2µ1(k) = −3
5

(
C

1− C

)
± 3

5
i |k |

(
5C2 − 16C

3

)1/2

,

2µ2(k) = −
(

C
1− C

)
± i |k |

(
5C2 − 16C

3

)1/2

.

Since 5C2 − 16C > 0 (remember C < 0), the damping
coefficients µ1(k), µ2(k) are in fact COMPLEX valued reflecting
the capillarity effect in the system.
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Epilogue

Things are not looking too promising for a possible resolution of
Hilbert’s 6th problem. It appears in the competition between
viscosity and capillarity, capillarity has become a very dogged
opponent, and the capillarity energy will not vanish in the limit
as ε→ 0. Hilbert’s hope may have been justified in 1900, but
serious doubts are now apparent. Finally Boltzmann’s theory
has proven to be a useful model for rarefied gases; Euler’s
theory has proven to be a useful model for dense gases; maybe
they must remain two INDEPENDENT theories and
UNIFICATION will NOT succeed for non-smooth (shock)
dynamics.
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