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Motivations: scattering amplitudes

Scattering amplitudes are natural observables in high-energy physics

Testing ground for current theories of nature

Exhibit striking simplicity and hidden symmetries

E.g. for gg → n g scattering at tree level,

the result

n 2 3 4 5 6 7 8
# diagrams 4 25 220 2485 34300 559405 10525900
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Motivations: scattering amplitudes

Scattering amplitudes are natural observables in high-energy physics

Testing ground for current theories of nature

Exhibit striking simplicity and hidden symmetries

E.g. for gg → n g scattering at tree level, the result

A(1±, 2+, . . . , n+) = 0
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Motivations: form factors

Study of form factors of local composite operators is an active area
of research

Partially off-shell:

FO(1, . . . , n; q) =

∫
d4x e iqx 〈1, . . . , n|O(x)|0〉

We are interested in a particular case where O(x) = Tr(F 3) and the
external state 〈g+g+g+|
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Motivations: form factors

FO(1, . . . , n; q) =

∫
d4x e iqx 〈1, . . . , n|O(x)|0〉

e.g.: EM form factor, deep inelastic scattering, Mott scattering

Probing the sub-structure of hadrons (protons) using electrons:
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Motivations: form factors and amplitudes

FO(1, . . . , n; q) =

∫
d4x e iqx 〈1, . . . , n|O(x)|0〉

Correction to the amplitude from addition of a new coupling to the
action:

δS = gO

∫
d4x O(x) A = 〈1, . . . , n|0〉

δA = gO

∫
d4x 〈1, . . . , n|O(x)|0〉+O(g2

O)

e.g. QCD effective Lagrangian: [Dawson, Lewis, Zeng]

Leff = Ĉ1O1 +
1

m2
top

5∑
i=2

ĈiOi +O(m−4
top) O1 = HTr(F 2)

Higgs amplitudes ↔ form factors of Tr(F 2)!

Two-loop form factors: from N = 4 SYM to QCD juyff
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1

m2
top

5∑
i=2
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Motivations: from N = 4 SYM to QCD

N = 4N = 4N = 4: two-loop form factor of Tr(φ2) equivalent to Tr(F 2):
[Brandhuber, Gurdogan, Mooney, Travaglini, Yang]

Tr(F 2
SD) and Tr(φ2) are in the same protected stress-tensor multiplet

Supersymmetric Ward identities relate the two form factors

N = 4N = 4N = 4 two loop form factor of Tr(φ2) identical to maximally
transcendental part of amplitudes for H → g+g+g± in QCD!

[Brandhuber, Travaglini, Yang]

Two-loop form factors: from N = 4 SYM to QCD juyff
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Motivations

End goal: be able to make statements about O3 = Tr(F 3) in QCD

For now: study N = 4 SYM length-3 operators built out of scalars:

OB = Tr(φ12[φ23, φ31]) , ÕBPS = Tr(φ12{φ23, φ31})

OB and Tr(F 3) have the same one-loop anomalous dimension

Anomalous dimension

In a CFT (e.g. N = 4 SYM): no mass spectrum. Analogous notion is a
conformal dimension: tells us how operators transform under dilatations

O∆(x)→ λ−∆O∆(λx)〈
O∆(x)Ō∆(y)

〉
=

1

|x − y |2∆

γ is the one-loop anomalous dimension.

Two-loop form factors: from N = 4 SYM to QCD juyff
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OB and Tr(F 3) have the same one-loop anomalous dimension
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Motivations

End goal: be able to make statements about O3 = Tr(F 3) in QCD

For now: study N = 4 SYM length-3 operators built out of scalars:

OB = Tr(X [Y ,Z ]) , ÕBPS = Tr(X{Y ,Z})

OB and Tr(F 3) have the same one-loop anomalous dimension

Anomalous dimension

In a CFT (e.g. N = 4 SYM): no mass spectrum. Analogous notion is a
conformal dimension: tells us how operators transform under dilatations

O∆(x)→ λ−∆O∆(λx)〈
O∆(x)Ō∆(y)

〉
=

1

|x − y |2(∆0+γ)

γ is the one-loop anomalous dimension.
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Motivations: form factors and anomalous dimension

Tr(F 3) and Tr(X [Y ,Z ]) have the same γ - so what?

Expand: 〈
O∆(x)Ō∆(y)

〉
=

1

|x − y |2(∆0+γ)

γ is the coefficient of the UV divergence in the result of 1-loop form
factor! [Zwiebiel, Wilhelm]

Form factors of Tr(F 3) and Tr(X [Y ,Z ]) have a chance to be related

Strategy: focus on Tr(X [Y ,Z ]) at two loops, simple(r). Learn and
apply to Tr(F 3) - many interesting lessons ahead!

Two-loop form factors: from N = 4 SYM to QCD juyff
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Expand: 〈
O∆(x)Ō∆(0)

〉
=

1

|x |2∆0
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1− γ log(|x |2Λ2) + . . .

]
γ is the coefficient of the UV divergence in the result of 1-loop form
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Preliminaries: N = 4 SYM and mixing

Maximally supersymmetric theory in 4d: 2 gluons G+/−, 8 fermions
ψABC , ψ̄A, 6 scalars φAB A = 1, . . . , 4

We consider closed sectors:

SU(2|3) consisting of {φ12, φ23, φ31, ψ123}
SU(2) consisting of {φ12, φ23} (subsector!)

Closed in the sense of operator mixing - under renormalization,
OREN ∼ OBARE but also other operators build out of letters forming
the sector - but not any other!

Our Tr(X [Y ,Z ]) drags along a friend - Tr(ψψ)

Could also imagine another dim 3 operator - Tr(X{Y ,Z})
This will turn out to be half-BPS - doesn’t mix!

Two-loop form factors: from N = 4 SYM to QCD juyff
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One-loop warm-up

Generalised unitarity

Unitarity: reconstruct loop-level
amplitudes from discontinuities
calculated via “cuts”
Generalised: more general cuts
that still lead to factorisation
into lower-loop and tree-level

F
(1)
XYZ =− i3 s23 × − i3 F

(1)
XZY = i3

F
(1)
X [Y ,Z ] = −i3 s23 × − 2 i3

Two-loop form factors: from N = 4 SYM to QCD juyff
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Two-loop cuts: useful trick

F
(1)
XYZ = − s23 × − F

(1)
XZY =

F
(1)
OB

= − s23 × − 2

F
(1)
X{Y ,Z} = − s23 × half-BPS!

Key observation

OB = OBPS − 2Tr(XZY ), useful as F
(2)
OBPS

done - same as F
(2)
TrX 3

[Brandhuber, Penante, Travaglini, Wen]
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Two-loop cuts: result

F
(2)
OB

= − − − −

+ − 2 − 2 − 2

− 2 − 2 + 2 + 2

− 2 − 2 − 4 − 4

Two-loop form factors: from N = 4 SYM to QCD juyff
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Two-loop reduction

Some of the integrals have known expressions and we can substitute
immediately, e.g: [Gehrmann, Remiddi]

=

(
Sε

16π2

)2

(−q)−2ε
3∑

i=−1

fi (
si+1 i+2

q2 , s1 i+1

q2 )

εi
+O(ε2)

Others, we need to reduce using LiteRed algorithm, e.g: [Lee]

=
3ε− 2

2ε(si i+2 + si+1 i+2)

(
−

)

Two-loop form factors: from N = 4 SYM to QCD juyff
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Two-loop remainder

Efficient way to present two-loop form factors

Free of infrared divergences, helicity-blind

Expressed in terms of at most transcendentality-four functions

Rescaling invariant, depends on Mandelstam variables only through
their ratios

Defined in terms of two important universal constants: cusp
anomalous dimension and collinear anomalous dimension:

R(2)
O := F

(2)
O (ε) − 1

2

(
F

(1)
O (ε)

)2 − f (2)(ε) F
(1)
O (2ε)− C (2) +O(ε)

f (2)(ε) := −2(ζ2 + ε ζ3 + ε2 ζ4)
[Bern, Dixon, Smirnov]

[Brandhuber, Travaglini, Yang]
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Symbol

Result seemingly simple, but after substituting for the integrals...

... and pages and pages more.
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Symbol

Some of the ingredients of the answer:

πn, ζ2, ζ3, ζ4

log(z)
(
=
∫
d log(z)

)
Lik(z) = −

∫ z

0
d log(1− t) ◦ d log(t) ◦ · · · ◦ d log(t)︸ ︷︷ ︸

k−1 times

G (ak , ak−1, . . . ; z) =
∫ z

0
G (ak−1, . . . ; t) d log(a1 − t)

In general - transcendentality ≤ 4 functions with many complicated
relations between them, e.g.:

Li2(z) + Li2(1−z) + log(1−z) log(z) =
π2

6

Help!

Two-loop form factors: from N = 4 SYM to QCD juyff
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Symbol

Define a function Tk of transcendentality degree k as:

Tk =

∫ b

a

d logR1 ◦ · · · ◦ d logRk

The symbol:

S(Tk) = R1 ⊗ · · · ⊗ Rk

Some properties

R1 · · · ⊗ (RaRb)⊗ · · ·Rk = R1 · · · ⊗ (Ra)⊗ · · ·Rk + R1 · · · ⊗ (Rb)⊗ · · ·Rk

R1 · · · ⊗ (cRa)⊗ · · ·Rk = R1 · · · ⊗ (Ra)⊗ · · ·Rk

[Goncharov, Spradlin, Vergu, Volovich]
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Symbol: example

Let’s go back to Euler’s identity:

Li2(z) + Li2(1−z) + log(1−z) log(z) =
π2

6

Lik(z) =

∫ z

0

Lik−1(t)d log t , Li1(z) = − log(1− z)

S(Li2(z)) = −(1− z)⊗ z

S(log(z1) log(z2)) = z1 ⊗ z2 + z2 ⊗ z1

The symbol of Euler’s identity:

−(1− z)⊗ z − z ⊗ (1− z) + (1− z)⊗ z + z ⊗ (1− z) = 0

Complicated relation becomes trivial but we lose some information!
Two very different functions can lead to the same symbol!

Two-loop form factors: from N = 4 SYM to QCD juyff
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Symbol

R(2) = R(2)
BPS +R(2)

non BPS R(2)
non BPS =

(18− π2)

ε
+

3∑
i=0

R(2)
non-BPS;3−i

S(2)
BPS(u, v ,w) = u ⊗ v ⊗

[ u
w
⊗S

v

w

]
+

1

2
u ⊗ u

(1− u)3
⊗ v

w
⊗ v

w

S(2)
3 (u, v ,w) = −2

[
u ⊗ (1− u)⊗ u

1− u
+ u ⊗ u ⊗ v

1− u
+ u ⊗ v ⊗ uv

w2

]
u =

s12

q2
, v =

s23

q2
, w =

s31

q2

Name of the game

Symbol does not lead to a unique function! Construct simpler function
with same symbol and numerically fix beyond-the-symbol terms.

Two-loop form factors: from N = 4 SYM to QCD juyff
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Two-loop remainder

R(2)
BPS =

3

2
Li4(u)−

3

4
Li4
(
−
uv

w

)
+

3

2
log(w)Li3

(
−
u

v

)
−

1

16
log2(u) log2(v)

−
log2(u)

32

[
log2(u)− 4 log(v) log(w)

]
−
ζ2

8
log(u)[5 log(u)− 2 log(v)]

−
ζ3

2
log(u)−

7

16
ζ4 + perms (u, v ,w)

R(2)
non BPS;3 = 2

[
Li3(u) + Li3(1−u)

]
−

1

2
log2(u) log

vw

(1−u)2

+
2

3
log(u) log(v) log(w) +

2

3
ζ3 + perms (u, v ,w)

R(2)
non BPS;2 = −12

[
Li2(1−u) + Li2(1−v) + Li2(1−w)

]
− 2 log2(uvw) + 36ζ2

R(2)
non BPS;1 = −12 log(uvw) R(2)

non BPS;0 = 126

Leading transcendentality contained in the BPS part!
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Two-loop remainder: observations

Maximum transcendentality
of a term

=
4−# shuffles

[Loebbert et al.]

The half-BPS Tr(X{Y ,Z}) contains the no-shuffle case - terms of
transcendentality 4

The offset Tr(XZY ) involves one shuffle: max. transcendentality 3

Computing form factors of half-BPS operators very useful also for
other operators!
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Two-loop remainder: comparison to SU(2)

SU(2) two-loop spin chain: [Loebbert, Nandan, Sieg, Wilhelm, Yang]

“Open” - no trace in the operator

No length-changing interactions

Smaller subsector: two letters {X ,Y }
Surprising observation: compare the remainders

Universality?
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Two-loop mixing

So what about OF = Tr(ψψ)? Under renormalisationOren
F

Oren
B

 =

Z F
F Z B

F

Z F
B Z B

B

Obare
F

Obare
B


Determine the renormalisation constants by studying the UV-divergent
parts of the following form factors:

(Z(L)) B
B ↔ F

(L)
Tr(X [Y ,Z ])(1φ

12

, 2φ
23

, 3φ
31

; q)
∣∣
UV

done!

(Z(L)) F
B ↔ F

(L)
Tr(X [Y ,Z ])(1ψ

123

, 2ψ
123

; q)
∣∣
UV

very easy!

(Z(L)) B
F ↔ F

(L)
Tr(ψψ)(1φ

12

, 2φ
23

, 3φ
31

; q)
∣∣
UV

easy!

(Z(L)) F
F ↔ F

(L)
Tr(ψψ)(1ψ

123

, 2ψ
123

; q)
∣∣
UV

recycled!
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Two-loop dilatation operator

The quantum corrections to the dilatation operator

δD = −µR
∂

∂µR
logZ a(µR) :=

g2Ne−εγ

(4π)2−ε

(
µR

µ

)−2ε

log(Z) ∼



∼O(a2)︷ ︸︸ ︷ ∼ a(µr )×g ∼O(ag)︷ ︸︸ ︷

︸ ︷︷ ︸
∼ a(µR )2g−1∼O(a2/g)

︸ ︷︷ ︸
∼O(a2)
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Two-loop dilatation operator

log(Z) =


a2(µR)

6

ε
−a(µR)g

6

ε

− a2(µR )
g · 6

ε
a(µR) · 6

ε
− a2(µR) · 18

ε

+O(a(µR)3)

δD = lim
ε→0

[
−µR

∂

∂µR
log(Z)

]
= 12×

 2 a2 −ag

−2 a2/g a− 6 a2


[Beisert, Eden]

Eigenvectors: OBPS′ = OF + g OB OK = OB −
gN

8π2
OF

Eigenvalues: γBPS′ = 0 γK = 12 a − 48 a2 +O(a3)
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Conclusions and outlook

Takeaway message:

Important motivation for studying form factors of half-BPS operators

Connection between QCD Higgs amplitudes and N = 4 form factors

Unexpected matching of form factors of operators in different sectors

Equally interesting connection between form factors and dilatation
operator - possible to compute δD using on-shell methods

Future directions:

Maximally transcendental part of Tr(F 3) given by half-BPS Tr(φ3)?

Investigate multiplet structure for Tr(F 3) (c.f. Tr(F 2) vs. Tr(φ2))

Develop a more systematic connection between Higgs-gluon
amplitudes and form factors in N = 4 SYM

Investigate higher-dimensional operators in Leff

Explore the theme of universality across sectors of N = 4

Compute δD for the whole theory or at higher loop order

Two-loop form factors: from N = 4 SYM to QCD juyff
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Conclusions and outlook

Thank you!
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Extras: spinor-helicity formalism

pαα̇ = σαα̇µ pµ =

(
p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

)
, σαα̇µ = (1, σi )

then det(p) = pµp
µ = m2

For massless particles: det(pαα̇) = 0 hence pαα̇i = λαi λ̃
α̇
i (h = −/+)

Raise/lower indices: λα = εαβλ
β

Create invariants: 〈λiλj〉 = λαi λj α = εαβλ
α
i λ

β
j =: 〈ij〉 , λ̃α̇i λ̃j α̇ =: [ij ]

and Mandelstam invariants: sij = (pi + pj)
2 = 2pi · pj = 〈ij〉 [ji ]

E.g.: first non-vanishing amplitude (MHV): [Parke, Taylor]

A(1+, . . . , i−, j−, . . . , n+) = i
〈ij〉4

〈12〉 〈23〉 . . . 〈n1〉

Two-loop form factors: from N = 4 SYM to QCD juyff
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