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The question and its motivation

We focus on two important limits used to derive evolution laws
from microscopic dynamics:

I The classical limit (sometimes called semiclassical limit)
when Planck’s constant ~ (which measures the strength of
quantum effects) is small with respect to the scale of
observation as discussed later. It is closely related to the
high-frequency limit of PDEs.

I The mean-field limit (one form of many-body limits, also
called sometimes thermodynamical limits) when the number
of bodies-particles N is sent to infinity, under some
appropriate assumption of low correlations.

In many situations the two regimes are involved: we want to study
how they interact. More precisely we want to quantify the
convergence of the mean-field limit uniformly along the
classical limit.



The two limits

Starting point: N-body Schrödinger equation for bosons

i~∂tΨN = − ~2

2m

N∑
k=1

∆xk ΨN +
N∑

k,l=1

V (xk − xl)ΨN

on symmetric N-body wave function ΨN(t, x1, . . . , xN), xk ∈ Rd .

Binary interaction potential V : measurable and even on Rd .

Rescaling: x̂ = x/L, t̂ = t/T , V̂ (ẑ) = (NT 2)/(mL2)V (z)

i∂tΨ̃
N
ε = − ε

2

N∑
k=1

∆xk Ψ̃N
ε +

1

Nε

N∑
k,l=1

Ṽ (x̃k − x̃l)Ψ̃N
ε , ε :=

~T
mL2

Classical limit ε→ 0 - Mean-field limit N →∞



The quantum mean-field limit (Hartree equation)

4 N goes to infinity while ε is kept fixed 4

Assuming initial decorrelation ΨN
ε,in ∼

∏N
k=1 ψε,in(xk) and under

various assumptions on V :∫
x2,...,xN

ΨN(t, x , x2, . . . , xN)ΨN(t, y , x2, . . . , xN)dx2 · · · dxN

−−−−→
N→∞

ψ(t, x)ψ(t, y)

where ψ solves the Hartree equation

i∂tψε = − ε
2

∆xψε +
1

ε

(
V ∗ |ψε|2

)
ψε, (ψε)|t=0 = ψε,in

Coulomb potential V or even more singular (cf. cubic NLS)
covered by existing results, but most of the time non-quantitative
apart from restricted cases and degenerates as ε→ 0



The classical limit (N-body Liouville equation)

4 ε goes to zero while N is kept fixed 4

High-frequency limit ⇒ one needs to localise oscillations

Wigner transform at scale ε:

Wε[Φ](X ,Ξ) :=
1

(2π)n

∫
Y

Φ

(
X − Y

2ε

)
Φ

(
X +

Y

2ε

)
e−iΞ·Y dY

If the initial conditions satisfy Wε[Ψ
N
ε,in] ∼ FN

in as ε→ 0, and under
appropriate conditions on V :

Wε[Ψ
N
ε (t, ·)] ∼ FN(t, ·) at later times t ≥ 0

where FN satisfies the N-body Liouville equation

∂tF
N +

N∑
k=1

ξk · ∇xkF
N − 1

N

N∑
k,l=1

∇V (xk − xl) · ∇ξkF
N = 0.



The mean-field limit in classical mechanics

4 N →∞ while ε = 0 4

Assuming initial decorrelation FN
in (X ,Ξ) ∼

∏N
k=1 fin(xk , ξk) and

under various assumptions on V :

FN(t,X ,Ξ) ∼
N∏

k=1

f (t, xk , ξk) at later times t ≥ 0 and∫
x2,ξ2,...,xN ,ξN

FN(t, x , ξ, x2, ξ2, . . . , xN , ξN) dx2 dξ2 · · · dxN dξN

−−−−→
N→∞

f (t, x , ξ)

where f solves the Vlasov equation

∂t f + ξ · ∇x f − (∇V ∗x f )∇ξf = 0, f|t=0 = fin.

Quantitative results for V ∈ C 2, partial results for some singular
V , open for Coulomb-Newton potentials



The classical limit in mean-field mechanics

4 ε→ 0 while N =∞ 4

High frequency limit again ⇒ localise oscillations

Wigner transform at scale ε:

Wε[Φ](X ,Ξ) :=
1

(2π)n

∫
Y

Φ

(
X − Y

2ε

)
Φ

(
X +

Y

2ε

)
e−iΞ·Y dY

If the initial conditions satisfy Wε[ψε,in](x , ξ) ∼ fin(x , ξ) as ε→ 0,
and under appropriate conditions on V :

Wε[ψε(t, ·)] ∼ f (t, x , ξ) at later times t ≥ 0

with ψε satisfies the Hartree equation, where f satisfies the Vlasov
equation

∂t f + ξ · ∇x f − (∇V ∗x f ) · ∇ξf = 0, f|t=0 = fin.



The diagram of limits

Schrödinger
N→∞ //

ε→0

��

?

%%

Hartree

ε→0

��

Liouville
N→∞

// Vlasov

Quantum mean-field limit:
Spohn’80, Bardos-Golse-Mauser’90s, Erdös-Schlein-Yau’00s,

Fröhlich-Knowles-Schwarz, Rodnianski-Schlein, Pickl. . .

Classical limit by Wigner transform (finite or infinite N):
Lions-Paul’90s, Gérard-Markowich-Poupaud-Mauser’90s

Classical mean-field limit:
Neunzert-Wick’74, Braun-Hepp’77, Dobrushin’79, Hauray-Jabin’07,

Golse-Mouhot-Ricci’13, Mischler-Mouhot-Ricci



The conceptual difficulties

(1) Classical mean-field limit traditionally reframed as the
convergence of empirical measures

µN(X ,Ξ) :=
N∑

k=1

δ(xk ,ξk ) ⇀ f

It is based on the use of weak topologies and either compactness
arguments or stability estimates in associated metrics (e.g.
Monge-Kantorovich-Wasserstein distances)

(2) Quantum mean-field limit based most often on the BBGKY
hierarchy written on the wave function, on compactness
arguments and in the topology of the trace-norm which
corresponds as ε→ 0 to total variation norm

↪→ quantitative results rare and restricted at quantum level
↪→ conflict of topologies (weak vs strong topology)
↪→ no equivalent of empirical measure at quantum level
↪→ Schrödinger equation ∼ Newton equations not Liouville!



Back to microscopic Hamiltonian dynamics

I Binary interactions through a potential V depending only on
the distance between two interacting bodies

I External forces with some potential φ(time, position)

I Hamilton equations (Newton laws)

dxk
dt

=
∂HN

∂ξk

dξk
dt

= −∂H
N

∂xk
in Rd , 1 ≤ k ≤ N

HN(X ,Ξ) =
N∑

k=1

ξ2
k

2︸ ︷︷ ︸
kinetic energy

+
∑
k<l

V (xk − xl)︸ ︷︷ ︸
interaction energy

+
N∑

k=1

φ(t, xk)︸ ︷︷ ︸
potential energy

I This corresponds to the set of N second-order ODEs in Rd

ẋk = ξk , ξ̇k = −
∑
k 6=l

∇xV (xk − xl)−∇xφ(xk), 1 ≤ k ≤ N



The N-body Liouville equation (I)

Statistical solution to the previous ODEs, i.e. evolution of a
distribution of trajectories:

∂FN

∂t
+

N∑
k=1

(
∂HN

∂ξk
· ∂F

N

∂xk
− ∂HN

∂xk
· ∂F

N

∂ξk

)
= 0

on joint microscopic probability distribution function FN(t,X ,Ξ)

Liouville’s theorem

For any t ∈ R one has FN(t, St(X ,Ξ)) = FN(0,X ,Ξ), where St is
the flow of the Hamilton equations, and St preserves volume

Consequence: statistical Casimir invariants (for Θ : R 7→ R)∫
R2dN

Θ
(
FN(t,X ,Ξ)

)
dX dV =

∫
R2dN

Θ
(
FN(0,X ,Ξ)

)
dX dV

including Boltzmann’s entropy for Θ(r) = r log r



The N-body Liouville equation (II)

Proof: Differentiate in time FN(t, St(X ,Ξ)) = FN(t,Xt ,Ξt):(
∂

∂t
FN

)
(t,Xt ,Ξt) +

(
∂

∂t
Xt

)
·
(
∂

∂X
FN

)
(t,Xt ,Ξt)

+

(
∂

∂t
Ξt

)
·
(
∂

∂Ξ
FN

)
(t,Xt ,Ξt) = 0

which means, using the equations on Xt and Ξt :(
∂

∂t
FN

)
(t,Xt ,Ξt) +

(
∂

∂Ξ
H

)
·
(
∂

∂X
FN

)
(t,Xt ,Ξt)

−
(
∂

∂X
H

)
·
(
∂

∂Ξ
FN

)
(t,Xt ,Ξt) = 0

which is the desired equation at the point (t,Xt ,Ξt).



The N-body Liouville equation (III)

Then compute time derivative of J(t,X ,Ξ) := det∇X ,ΞSt(X ,Ξ):

d

dt
J(t,X ,Ξ) =

[∑
i

(
∂2HN

∂xk∂ξk
− ∂2HN

∂ξk∂xk

)]
J(t,X ,Ξ) = 0

Together with J(0,X ,Ξ) = det Id = 1, it yields J(t,X ,Ξ) ≡ 1
One deduces by change of variable∫

R2dN

Θ
(
FN(t,X ,Ξ)

)
dX dV =

∫
R2dN

Θ
(
FN(0,X ,Ξ)

)
dX dV

→ conservation of Lebesgue norms, Boltzmann entropy. . .
This reflects the time-reversibility of the Liouville equation:
invariance under the change of variable (t,X ,Ξ) 7→ (−t,X ,−V )
Cf. reversibility of Newton laws at microscopic level



The BBGKY hierarchy (I)

I N-particle Liouville equation allows for considering
superpositions of all trajectories at once, still contains same
amount of information as the Newton equations

I Desirable to simplify description of the system by throwing
away information: (Hopefully) the system is described by a
one-particle distribution (first marginal):

f N1 (t, x , v) :=

∫
R2d(N−1)

FN(t,X ,Ξ)dx2 dx3 . . . dxN dv2 . . . dvN

(Observe that it still depends on N)

I Why the marginal according to the first variable? No loss of
generality since FN symmetric (invariant under permutations)
by indistinguability of the particles



The BBGKY hierarchy (II)

I How can we interpret this equation?

I Binary collisions ⇒ evolution of first marginal (f N1 ) depends
on second marginal f N2 : interactions ⇒ correlations

I Similarly f N2 ’s evolution depends on f N3 and so on:

∂f N1
∂t

= L1(f N1 ) + B1(f N2 )

. . .
∂f Nk
∂t

= Lk(f Nk ) + Bk(f Nk+1)

. . .
∂f NN
∂t

=
∂FN

∂t
=
{
HN ,FN

}
I This is the BBGKY hierarchy (Bogoliubov, Born, Green,

Kirkwood, Yvon) for

f N1 , f N3 , . . . , f Nk , . . . , f
N
N = FN .



The Many-particle or “Thermodynamic” Limit

I Goal of thermodynamical limit: perform N →∞ and recover
closed equations on reduced distribution f N1 ∼ f1 as N ∼ ∞

I Natural to ask whether (low correlations)

f N2 = f N1 ⊗ f N1 := f N1 (t, x , v)f N1 (t, y ,w)?

I However the probability independence assumption not
preserved along time for interacting particle systems

I Boltzmann discovered (and Kac formulated
mathematically. . . ) that this could hold in the limit N →∞

f N2 ∼ f N1 ⊗ f N1 as N → +∞ (”near-product structure”)

→ this is the idea of molecular chaos

I Formally chaos ⇒ closed equation on f1 as N →∞
(Vlasov in mean-field scaling, Boltzmann with Nr(N)2 = 1)



Empirical distribution solutions to the Vlasov equation (I)

Crucial property uncovered by Dobrushin: the empirical
distribution following the microscopic trajectories is a weak
solution to the nonlinear Vlasov equation

Let ZN
t = (Xt ,Ξt) be the solutions to the microscopic equations

with initial data ZN
0 , then the corresponding empirical distribution

µNt satisfies

∂µNt
∂t

+ v · ∇xµ
N
t − [∇xV ∗x ,ξ µnt ] (t, x) · ∇vµ

N
t = 0

in the weak sense with

[V ∗x ,ξ µnt ] (t, x) :=

∫
y ,ξ

V (x − y)dµNt (y , ξ)



Empirical distribution solutions to the Vlasov equation (II)

Proof: in the sense of distribution for a test function ϕ ∈ C∞c (E )

∂t〈µNt , ϕ〉 = ∂t

(
1

N

N∑
k=1

ϕ(xk , ξk)

)

=
1

N

∑
k=1

(
∂xk
∂t
· ∇xϕ(xk , ξk) +

∂ξk
∂t
· ∇ξϕ(xk , ξk)

)

=
1

N

N∑
k=1

(
ξk · ∇xϕ(xk , ξk)− 1

N

N∑
l=1

∇xV (xk − xl) · ∇ξϕ(xk , ξk)

)

=
〈
µNt , ξ · ∇xϕ

〉
−
〈
µNt ,

[
∇xV ∗ µNt

]
∇ξϕ

〉
= −

〈
ξ · ∇xµ

N
t , ϕ

〉
+
〈[
∇xV ∗ µNt

]
· ∇ξµNt , ϕ

〉



Proof of classical mean-field limit (I)

Convergence of µNt by compactness and weak-strong uniqueness
stability of Vlasov equation
⇒ Frontier between classical and statistical mechanics is in the
topology M1 / L1 (strong distance is too crude for handling Dirac
masses ‖δx − δy‖ = 2 1x 6=y . . . )

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
E×E
|Z − Z ′|p dπ(Z ,Z ′)

)1/p

Π(µ, ν) set of probability with marginals µ and ν (“coupling”)

Wp(µ, ν) =

(
inf

(Z ,Z ′)∼π∈Π(µ,ν)
E
(
|Z − Z ′|p

))1/p

Observe that Wp(δx , δy ) = |x − y |p (sensitive to the distance)



Proof of classical mean-field limit (II)

To avoid using empirical measure: new Eulerian proof of
Dobrushin’s estimate in Wp on the BBGKY hierarchy

Start from an optimal coupling πNin between f N and gN at time
zero, and derive at later time πNt by the evolution

∂tπ
N +

{
(HMF )⊗N1 + HN

2 , π
N
}

2N
= 0

Study DN(t) :=
1

N

∫ ( N∑
k=1

|xk − yk |p + |ξk − ηk |p
)

dπNt

d

dt
DN(t) = − p

N

N∑
j=1

∫
(ξj − ηj) · (xj − yj)|xj − yj |p−2 dπNt

− p

N

N∑
j=1

∫
(ξj−ηj)·

(
[∇V ∗ f ](xj)−

1

N

N∑
k=1

∇V (yj − yk)

)
|ξj−ηj |p−2 dπNt



Proof of classical mean-field limit (III)

Use Young inequality to reduce RHS to DN(t) and

1

N

N∑
j=1

∫ ∣∣∣∣∣[∇V ∗ f ](xj)−
1

N

N∑
k=1

∇V (yj − yk)

∣∣∣∣∣ dπNt
Use Lipschitz constant on V to reduce it to DN(t) and

1

N

N∑
j=1

∫ ∣∣∣∣∣[∇V ∗ f ](xj)−
1

N

N∑
k=1

∇V (xj − xk)

∣∣∣∣∣ dπNt
Use quantitative law of large number at each time on πNt

EπN
t

[
[∇V ∗ f ](xk)− 1

N

N∑
l=1

∇V (xk − xl)

]
= O

(
N−min(1/2,p/d)

)
[Fournier-Guillin PTRF to appear]



Proof of classical mean-field limit (IV)

Finally differential inequality of the form:

d

dt
DN(t) . DN(t) + O

(
N−min(1/2,p/d)

)
⇒ control over time by Gronwall lemma

Then use that

Wp

(
µNt , f

⊗N
t

)p
≤ DN(t)

(particular coupling) to conclude



The quantum N-body Von Neumann-Liouville equation

Functional setting: H = L2(Rd), HN = L2(RdN)
L(H) bounded linear operators
D(H) subset where A∗ = A and trace(A) = 1

Von-Neumann-Liouville equation

i∂tρ
N
ε =

− ε
2

N∑
k=1

∆k +
1

Nε

N∑
k,l=1

V (xk − xl) , ρ
N
ε


(commutator bracket) with ρNε ∈ D(H)

In the mean-field limit

i∂tρε =

[
− ε

2
∆ +

1

ε
V(ρε) , ρε

]
, V(ρε) :=

∫
z
V (x − z)ρε(t, z , z)

Concept of marginal replaced by partial traces ρN,nε ∈ D(Hn):

traceHn

(
AρN,nε

)
= trace

(
(A⊗ IN−n)ρN

)
where A ∈ L(Hn)



A semi-classical Monge-Kantorovich quasi-distance

Concept of quantum coupling between ρ1 and ρ2:
R ∈ D(H2) with partial traces respectively ρ1 and ρ2

Monge-Kantorovich quantum quasi-distance:

MK2 (ρ1, ρ2) = inf
R

traceH2 ((Q∗Q + P∗P)R)1/2

with Qψ = (x1 − x2)ψ(x1, x2) and Pψ = −iε(∇x1 −∇x2)ψ

Properties:
(i) MK2(ρ1, ρ2) ≥ 2dε
(ii) If ρ1/2 Töplitz operators at scale ε with symbols (2πε)dµ1/2

then
MK2(ρ1, ρ2) ≤W2(µ1, µ2) + 2dε

(iii) Husimi transforms at scale ε: W̃ε[ρ1/2] then

MK2(ρ1, ρ2) ≥W2(W̃ε[ρ1], W̃ε[ρ2])− 2dε



The main result

Similar Gronwall estimate on quantum total cost

DN(t) := traceH2 ((Q∗Q + P∗P)Rt)

where the coupling Rt evolves according to

∂tRt +
[
(HMF )⊗N1 + HN

2 ,Rt

]
2N

= 0

and use the same other ingredients. . .


