Global solutions for the cubic non linear wave equation

Nicolas Burq

Université Paris-Sud, Laboratoire de Mathématiques d'Orsay, CNRS, UMR 8628, FRANCE and Ecole Normale Supérieure

Oxford

sept 12th, 2012

Based on joint works with

G. Lebeau¹, L. Thomann² and Nikolay Tzvetkov³

¹Université de Nice, Sophia-Antipolis ²Université de Nantes ³Université de Cergy-Pontoise

Why study PDEs with low regularity initial data?

- Global existence of smooth solutions: local (in time) classical strategy for initial data in a space X such that the norm in X is essentially preserved by the flow. If it is possible to solve the equation between t = 0 and t = T(||u₀||_X) and if ||u(T)||_X ≤ ||u₀||_X then it is possible to solve between t = T and t = 2T, etc...
- Large time behaviour of solutions with *smooth* initial data (scattering), or large time behaviour of the norms of these solutions (exponential/polynomial increase rate, etc...)

 Informations about the behaviour of the blowing up solutions in some cases.

...

Super/sub critical PDEs (in Sobolev spaces)

While solving non linear PDEs, very often a critical threshold of regularities appears, s_c , for which

- ► If the initial data are smooth enough, u₀ ∈ H^s, s > s_c then local existence holds (with a time existence depending only on the norm of u₀ in H^s)
- If the initial data are not smooth enough i.e
 u₀ ∈ H^s, s < s_c (and not better) then the PDE is unstable, or even ill posed

For example for the Navier-Stokes equation, the critical index is

- $s_c = 0$ in space dimension 2
- $s_c = 1/2$ in space dimension 3

Some unstabilities

- The solution ceases to exist after a finite time: finite time blow up.
- No continuous flow (on any ball in H^{s}) ill posedness.
- The flow defined by the PDE (if it exists) is not uniformly continuous on the balls of H^s.
- The flow defined by the PDE (if it exists) is not C^k on the balls of H^s.

N.B. This latter type of instabilities say very little about the smooth solutions, but tell essentially that some approaches for solving the PDE will not work.

The *d*-dimensional wave equation: a model dispersive PDE

Let (M, g) be a *d*-dimensional riemannian manifold (without boundary) and

$$\mathbf{\Delta} = \sum_{i,j=1,\cdots,3} \frac{1}{\sqrt{\det g}} \frac{\partial}{\partial x_i} g^{i,j}(x) \sqrt{\det g} \frac{\partial}{\partial x_j}$$

be the Laplace operator on functions, and

(NLW)
$$\begin{cases} (\frac{\partial^2}{\partial t^2} - \mathbf{\Delta})u + u^3 = 0, \\ (u, \partial_t u)_{t=0} = (u_0(x), u_1(x)) \in H^s(\mathcal{M}) \times H^{s-1}(\mathcal{M}) \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

the cubic defocusing non linear wave equation.

Critical index: $s_c = (d - 2)/2$ Theorem (Strichartz, Ginibre-Velo, Kapitanskii, ...) Let $s \ge (d - 2)/2$. For any initial data $(u_0, u_1) \in \mathcal{H}^s(M) = H^s(M) \times H^{s-1}(M)$, there exists T > 0and a unique solution to the system (NLW) in the space

 $C^{0}([0, T]; H^{s}(M)) \cap C^{1}([0, T]; H^{s-1}(M)) \cap L^{4}((0, T) \times M)$

Furthermore, if $s > s_c$, $T = T(||(u_0, u_1)||_{\mathcal{H}^s(M)})$.

The super-critical wave equation is *ill posed* Theorem (Lebeau 01, Christ-Colliander-Tao 04, Burq-Tzvetkov 07)

Assume $s < s_c$.

There exists sequences (u_{0,n}, u_{1,n}) ∈ C₀[∞](M), (t_n) ∈ ℝ such that the solution of (NLW) with initial data (u₀, u₁) exists on [0, 1] but

$$\begin{split} \lim_{n \to +\infty} \|(u_{0,n}, u_{1,n})\|_{\mathcal{H}^{s}(M)} &= 0, \\ \forall \epsilon > 0, \lim_{n \to +\infty} \|u_{n}\|_{L^{\infty}((0,\epsilon); \mathcal{H}^{s}(M))} &= +\infty \end{split}$$

► There exists an initial data (u₀, u₁) ∈ H^s(M) such that any weak solution of (NLW) associated to this initial data, satisfying the "finite speed of propagation" (or "light cone dependence property") principle ceases instantaneously to belong to H^s(M).

Is instability a generic situation?

Unstable initial data are very particular:

 $(u_{0,n}, u_{1,n}) = n^{\frac{3}{2}-s}(\phi(nx), n^{-1}\psi(nx)), \quad \phi, \psi \in C_0^{\infty}(\mathbb{R}^3).$

- Question: are the initial data exhibiting the pathological behaviour described by Christ-Colliander-Tao's and Lebeau's result rares or on the contrary generic?
- Can we still define solutions for a large class of initial data with super-critical regularity?

A first answer is that in some sense the situation is much better behaved than what CCT and Lebeau's theorems might let think: the phenomenon described above appears to be rare (in some sense). We show that for random initial data, the situation is much better behaved.

Random initial data.

Any function $u \in H^{s}(M)$ writes with $\Delta e_{n} = -\lambda_{n}^{2}e_{n}$

 $u = \sum_{n} \alpha_{n} e_{n}(x), \qquad \sum_{n} (1 + |\lambda_{n}|^{2})^{s} |\alpha_{n}|^{2} = ||u||_{H^{s}(M)}^{2} < +\infty.$ Let Ω, \mathcal{A}, p be a probabilistic space and (\mathbf{g}_{n}) a sequence of *independent* random variables *with mean equal to* 0 and super exponential decay at infinity (e.g. Gaussian) :

$$\exists C, \delta > 0; \forall \alpha > 0, \sup_{n} \mathbb{E}(e^{\alpha |\mathbf{g}_{n}|}) < Ce^{\delta \alpha^{2}}$$

a random function in $H^{s}(M)$ takes the form

$$\mathbf{u}_{\mathbf{0}}(x) = \sum_{n \in \mathbb{Z}^3} \mathbf{g}_n \alpha_n \mathbf{e}_n(x), \qquad \sum_n (1 + \lambda_n^2)^s |\alpha_n|^2 < +\infty,$$

with possible symetries to keep real functions (in which case independence is assumed modulo the symetries)

Almost sure local well posedness for random initial data in $\mathcal{H}^{s} = H^{s} \times H^{s-1}, \forall s \ge 0$ Theorem (Tzvetkov-B. 2008) Consider $s \ge 0$, $M = \mathbb{T}^{3}$, assume

$$(u_0, u_1) = (\sum_n \alpha_n e_n(x), \sum_n \beta_n e_n(x)) \in \mathcal{H}^s$$

and a random initial data

$$(\mathbf{u}_0,\mathbf{u}_1) = \left(\sum_{n\in\mathbb{Z}^3} \mathbf{g}_n \alpha_n e_n(x), \sum_{n\in\mathbb{Z}^3} \widetilde{\mathbf{g}}_n \beta_n e_n(x)\right)$$

Notice that a.s. $(\mathbf{u}_0, \mathbf{u}_1) \in \mathcal{H}^s(M)$. Then a.s. there exists $\mathbf{T} > 0$ and a unique solution $\mathbf{u}(t, x)$ of (NLW) in a space

 $X_T \subset C([0, T]; H^s(M)) \cap C^1([0, T]; H^{s-1}(M)).$

From local to global existence

The result above shows that we have a good Cauchy theory at the probabilistic level in $\mathcal{H}^{s}(M), s \geq 0$. and we can almost surely solve the non linear wave equation on a maximal time interval $(0, \mathbf{T})$.

Natural question: $\mathbf{T} = +\infty$ a.s.? (global existence).

Theorem (Tzvetkov-B.2011)

Assume $M = \mathbb{T}^3$. For any $0 \le s$, the solution of (NLW) constructed above exists almost surely globally in time and satisfies:

$$\|(\mathbf{u}(t,\cdot),\partial_t\mathbf{u}(t,\cdot))\|_{\mathcal{H}^s(\mathcal{M})}^2 \leq \begin{cases} C((\mathbf{K}+t))^{\frac{(1-s)}{s}+0}, & \text{if } s > 0\\ e^{C(\mathbf{K}+t^2)}, & \text{if } s = 0 \end{cases}$$

with $\mathcal{P}(\mathbf{K} > \Lambda) \leq Ce^{-c\Lambda^{\delta}}$

Rk 1. Almost surely, the initial data $(\mathbf{u}_0, \mathbf{u}_1) \in \mathcal{H}^s(M)$, $s \ge 0$, but as soon as

$$\sum_{n\in\mathbb{Z}^3} (1+\lambda_n^2)^{s'} |\alpha_n|^2 + (1+\lambda_n^2)^{s'-1} |\beta_n|^2 = +\infty$$

and the random variables g_n, \tilde{g}_n do not accumulate at 0 (say they are i.i.d. non trivial), then almost surely

 $(\mathbf{u}_0,\mathbf{u}_1)\notin\mathcal{H}^{s'}(M)$

and the result provides many initial data for which the classical Cauchy theory does not apply (even locally in time) Rk 2. In the deterministic setting, global well posedness below H^1 iniciated by Bourgain using high/low decomposition. Then global well posedness obtained for $s > \frac{3}{4}$ by Kenig-Ponce-Vega (see also Gallagher-Planchon), and then for $s = \frac{3}{4}$ by Bahouri-Chemin, and for $s = \frac{2}{3}$ by Hani Rk 3. We also can show that the flow is uniformly continuous in the following Hadamard-probabilistic sense: recall

 $\mathcal{P}(A|B) = \mathcal{P}(A \cap B)/\mathcal{P}(B)$

Theorem (N.B, N. Tzvetkov, 2011)

Denote by $\mathbf{U} = (\mathbf{u}_0, \mathbf{u}_1)$, and $\Phi(t)\mathbf{U}$ the solution of the NLW with initial data \mathbf{U} , which exists a.s., then $\forall T, A, \epsilon > 0$,

(0.1)
$$\begin{aligned} \lim_{\eta \to 0} \mathcal{P}\{(\mathbf{U}, \mathbf{V}); \|\Phi(t)\mathbf{U} - \Phi(t)\mathbf{V}\|_{L^{\infty}(0, T); \mathcal{H}^{s}} > \epsilon \\ \|\|\mathbf{U} - \mathbf{V}\|_{\mathcal{H}^{s}} \le \eta \text{ and } \|\mathbf{U} + \mathbf{V}\|_{\mathcal{H}^{s}} \le A\} = 0 \end{aligned}$$

In other words, among the couples of initial data (U, V), which are A-bounded, and η -close, most of them (the residual probability is arbitrarily small if $\eta > 0$ is small) generate solutions to NLW which remain ϵ -close to each other.

Rk 4. In the continuity property above, one cannot eliminate the probabilistic side: the property is known to be false otherwise. Actually, it is possible to show that there exists ϵ , A > 0 such that for any $\eta > 0$ the probability above is non zero (and consequently the set is non empty!) Rk 5 This result is linked to results by Colliander-Oh where global existence for one dimensional NLS.

Higher dimensions, other manifolds

Theorem (Thomann, Tzvetkov-B.2012, Lebeau-B 2012)

Here we need additional assumptions on the coefficients of the functions (u_0, u_1) used to build our measures, to avoid lacunary series phenomena

- Assume dim(M) = 3. Then the previous results hold
- ► Assume d ≥ 4. For any 0 ≤ s, there exists almost surely a global weak solution of (NLW) which is obtain as a weak limit of the solutions to the truncated systems

$$(\partial_t^2 - \Delta)u_k + P_k((P_k u_k)^3) = 0$$

 $(P_k \text{ is a (smooth projector on the } k \text{ first modes of the Laplace operator})$

Rk 6 This result of existence of weak solutions is very much linked to previous results by Albeveiro-Cruzeiro,
Kuksin-Shirikyan, Da Prato-Debussche and the analog result by Nahmod-Pavlovic-Staffilani on Navier Stokes.
Rk 7 We actually have similar weak-type results for other model equations as

- NLS on S³
- Benjamin-Ono equation
- The derivative NLS

Deterministic theory: local Cauchy theory in H^1 . The case of the dimension 3. Theorem

Assume that

 $||u_0||_{H^1} + ||u_1||_{L^2} \leq \Lambda.$

There exists a unique solution of (NLW)

 $u \in L^{\infty}([0, C^{-1}\Lambda^{-3}], H^1 \times L^2(M))$

Moreover the solution satisfies

 $\|(u,\partial_t u)\|_{L^{\infty}([0,C\Lambda^{-3}],H^1\times L^2)} \leq C\Lambda$

and $(u, \partial_t u)$ is unique in the class

 $L^{\infty}([0, C\Lambda^{-3}], H^1 \times L^2)$

Proof: Fixed point in the ball centered on $S(t)(u_0, u_1)$ in

$L^{\infty}((0, T); H^{1}_{x})$

Use that u satisfies $(\partial_t^2 - \Delta)u = -u^3$, and hence Duhamel formula gives

$$egin{aligned} & u = S(t)(u_0,u_1) - \int_0^t rac{\sin((t-s)\sqrt{-\Delta})}{\sqrt{-\Delta}} u^3(s) ds \ &= S(t)(u_0,u_1) + K(t)(u) \end{aligned}$$

where K(t) satisfies (using Sobolev embeddings $H^1_x \hookrightarrow L^6_x$)

$$\begin{split} \| \mathcal{K}(t)(u) \|_{L^{\infty}(0,T);H^{1}(M)} &\leq \| u^{3} \|_{L^{1}(0,T);L^{2}(M)} \\ &\leq T \| u \|_{L^{\infty}(0,T);L^{6}(M)}^{3} \leq CT \| u \|_{L^{\infty}(0,T);H^{1}(M)}^{3} \end{split}$$

Deterministic theory in H^1 : a remark

Theorem Assume that

 $||u_0||_{H^1} + ||u_1||_{L^2} + ||f||_{L^{\infty}(\mathbb{R};L^6(M))} \leq \Lambda.$

There exists a unique solution in $L^{\infty}([0, C\Lambda^{-3}], H^1 \times L^2)$ of

$$(\partial_t^2 - \Delta)u + (f + u)^3 = 0, (u, \partial_t u)|_{t=0} = (u_0, u_1)$$

Moreover the solution satisfies

 $\|(u,\partial_t u)\|_{L^{\infty}([0,\tau],H^1\times L^2)}\leq C\Lambda.$

(same proof as before)

A result by Paley and Zygmund (1930)

Consider a sequence $(\alpha_k)_{k\in\mathbb{N}}\in\ell^2$

$$\sum_{k} |\alpha_k|^2 < +\infty.$$

Let u be the trigonometric series on $\mathbb T$

$$u = \sum_{k} \alpha_{k} e^{ik\theta}$$

This series is convergent in $L^2(\mathbb{T})$ but "in general" (generically for the ℓ^2 topology), the function u is in

no $L^{p}(\mathbb{T}), p > 2$ space.

If one changes the signs in front of the coefficients α_k randomly and independently, i.e. if one considers

$$\sum_k \mathbf{g_k} lpha_k e^{ik heta} = \mathbf{u}(heta)$$

where $\mathbf{g}_{\mathbf{k}}$ are Bernouilli *independent* random variables,

$$P(\mathbf{g}_{\mathbf{k}}=\pm 1)=\frac{1}{2}$$

Theorem (Paley-Zygmund 1930-32, also Rademacher, Kolmogorov 30')

For any $p < +\infty$, almost surely, the series $\mathbf{u} = \sum_{k} \mathbf{g}_{k} \alpha_{k} e^{ik\theta}$ is convergent in $L^{p}(\mathbb{T})$. Furthermore, large deviation estimate:

$$\mathcal{P}(\{\|\mathbf{u}\|_{L^p(\mathbb{T})}>\lambda\})\leq \mathit{Ce}^{-c\lambda^2}$$

Local existence, $M = \mathbb{T}^3$

We look for the solution \mathbf{u} under the form

 $\mathbf{u} = S(t)(\mathbf{u_0},\mathbf{u_1}) + \mathbf{v} = \mathbf{u}_f + \mathbf{v}$

v is solution of an equation of the form

 $(\partial_t^2 - \Delta)\mathbf{v} + (S(t)(\mathbf{u}_0, \mathbf{u}_1) + \mathbf{v})^3 = 0, \qquad (\mathbf{v}, \partial_t \mathbf{v}) \mid_{t=0} = (0, 0)$

which is essentially a cubic non linear wave equation with a source term $(S(t)(\mathbf{u}_0, \mathbf{u}_1)^3)$. According to Paley-Zygmund, a.s. this source term is admissible, and according to the deterministic H^1 theory, there exists a time $\mathbf{T} > 0$ such that this equation is well posed in H^1 : notice that

$$L^{p/3}((0, \mathbf{T}); L^2(M)) \subset L^1_t; L^2_x.$$

In some sense, this result shows that the seemingly super-critical problem is in fact sub-critical

Global existence $M = \mathbb{T}^3$

Fix T > 0. Want to prove almost surely existence up to time T of a solution. Fix $N \gg 1$. Seek **u** as

 $\mathbf{u} = \mathbf{w} + \mathbf{v} = S(t)(\mathbf{u}_0, \mathbf{u}_1) + \mathbf{v}$

$$egin{aligned} &(\partial_t^2-\Delta)\mathbf{v}+(\mathcal{S}(t)(\mathbf{u}_0,\mathbf{u}_1)+\mathbf{v})^3=0,\ &(\mathbf{v},\partial_t\mathbf{v})\mid_{t=0}=(0,0) \end{aligned}$$

AIM: Prove that **v** exists on [0, T] with probability 1. H^1 -norm controls local Cauchy theory, hence enough to prove that H^1 norm of **v** remains bounded on [0, T]

A priori bound

 $E(v) = \int_{U} \frac{1}{2} |\partial_t v|^2 + \frac{1}{2} |\nabla_x v|^2 + \frac{1}{4} |v|^4 dx$ $\frac{d}{dt}E(t)$ $=\int_{M}\partial_{t}u(v^{3}-(w^{\omega}+\mathbf{v})^{3})dx=\int_{M}\partial_{t}u(-3v^{2}w-3w^{2}v-w^{3})dx$ $\leq 3\|\partial_t v\|_{L^2_x}\|v\|_{L^4_x}^2\|w\|_{L^\infty_x}+3\|\partial_t v\|_{L^2_x}\|v\|_{L^4_x}\|w\|_{L^\infty}^2+\|\partial_t v\|_{L^2_x}\|w\|_{L^\infty}^3$ $\leq C(E(t)\|w\|_{L^{\infty}_{\infty}} + E(t)^{3/4}\|w\|_{L^{\infty}}^{2} + E(t)^{1/2}\|w\|_{L^{\infty}}^{3})$ < C(f(t)E(t) + g(t))Paley-Zugmund gives

 $\begin{aligned} \mathcal{P}(\|w\|_{L^{p}((0,T);L^{\infty}(M))} > \lambda) &\leq \mathcal{P}(\|w\|_{W^{\varepsilon,p}_{t,x}} > \lambda) \leq Ce^{-c\lambda^{2}} \\ &\Rightarrow f(t), g(t) \in L^{1}_{loc}(\mathsf{R}_{t}) \end{aligned}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conclude using Gronwall

General manifolds

In the case of tori, Paley-Zygmund uses in an essential way the trivial estimate for eigenfunctions of the Laplace operator

 $\|e^{in\cdot x}\|_{L^{\infty}(\mathbb{T}^d} \leq 1$

In the case of a general manifold, this is no more true. Have to find a substitute, the *precised Weyl's formula*

Theorem (Hörmander, 1968)

 $\sum_{\lambda \leq \lambda_n < \lambda + M} |e_n|(x)^2 \sim \lambda^{d-1}, \qquad \sharp\{n; \lambda \leq \lambda_n < \lambda + M\} \sim \lambda^{d-1}.$

This results implies $||e_n||_{L^{\infty}} \leq C \lambda_n^{\frac{d-1}{2}}$ and if x is fixed, there is essentially only one eigenfunction which can be this large at x As a consequence, in a "mean-value" meaning, the eigenfunctions of the Laplace operator behave as if they were bounded. Exploit this phenomenon in Paley-Zygmund.

Further developments

- Extends to other non-linearities (but requires the use of Strichartz estimates for the proof)
- Allow correlations in the random variables (using some slack in the arguments)
- Relax the mean equal to 0 assumption on the random variables i.e. perform the randomization around a given solution (e.g. smooth, or given by the preceding procedure) instead of the trivial (vanishing) solution
- Extend to other dispersive equations such as non linear Schrödinger equations with or without harmonic potential (with L. Thomann), see also the work by Yu Deng