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Outline

What is Machine Learning?
Cross-validation

Regressions (linear and logistic)
Classification Tree

Support Vector Machine

Neural Networks

Deep Neural Learning
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Literatures

» The Elements of Statistical Learning by T. Hastie, R.
Tibshirani and J. Friedman, Second edition, Springer, 2009
> Deep Learning by lan Goodfellow and Yoshua Bengio, 2016
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Machine Learning

“Scientific study of algorithms and statistical models that computer
systems use to progressively improve their performance on a specific
task.” - Wikipedia
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Definition

» Machine learning seeks to answer the question:

» “How can we build computer systems that automatically
improve with experience, and what are the fundamental laws
that govern all learning processes?” - Tom Mitchell

» Machine learns with respect to a particular task T, performance
metric P, and type of experience E

» A computer learns if it improves its performance P at some task
T with experience E (i.e. more data)

» Extracting a model of a system from the observations (or the
simulations) in some situations

» The model presents some relationships between the variables
used to describe the system
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Machine learning for Finance

MACHINE LEARNING USE CASES IN FINANCE

o

Process Security Underwriting and Algorithmic Robo-advisory
Automation credit scoring trading

» Reduced operational costs through process automation

> Increased revenues due to better productivity and enhanced
user experiences

» Better compliance and reinforced security
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Machine Learning in Finance

» Humans have shown not very much skill at making superior
investments

» 86% money managers failed to beat their benchmarks !

Predictive analytics for finance (ex. fraud detection, credit risk)
Analysis of invest's sentiment on social media streams

Quants and algotrading - patterns in the data

Better understand systemic risk in financial systems

Better understand patterns in investor and consumer behavior
Opportunities of digital currencies and cryptography

vV vV vy VYT Vvyy

http://money.cnn.com/2015/03/12 /investing/investing-active-versus-

passive-funds
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Financial data

» Public data

» Stock, Forex, Oil ...
» Google, Yahoo ...
» Gov, Open data ...

» Semi-public data

» data vendors (stocks, bonds, funds, options, futures ...)
» media (Bloomberg, Reuters ...)
» API (Quandl)

» Internal data

» valuation information, fundamental data, reference data ...

» Unstructured data

» media reports (FT, ...)
» social media (Twitter, FB ...)
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Financial Data Analytics

» Financial Data Analytics can be broken down into a series of
steps:

1.
2.

>
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Data collection (stucture and unstructure data)

Data preprocessing and preparation (cleaning; inconsistant data;
spliting data; 80/20 or 70/30 rules)

Data exploration (learning more about the data and its nuances)
Data modeling (regression; machine learning)

. Model evaluation (biased results; performance criteria;

benchmark; testing data; out of sample)
Performance improvement (more data; better model; parallel
computing; ensembling; scalibility)



Cross-validation

> Learning and testing the model on the same data is a
methodological mistake

Cross-validation aims to detecte and prevent overfitting
Accuracy on the training set is optimistic

A better estimate comes from an independent set (testing set)
We can’t use the testing set when building the model or it
becomes part of the training set

> We estimate the testing set accuracy with the training set

vVVvyYyYyywy
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Cross-validation

» The model f, depends on a parameter A

» We aim to identify the model that gives the best result (see
below) on the whole population (not the one that gives the
best result on the testing set)

» Given the training set 7, we aim to minimise the generalisation
error.

minE [L(y, A\(x))|T]

where: L is the loss function (e.g. L(u,v) = (u— v)?),
» Alternatively, minimise the prediction error:

minE [L(y, A (x))

» The expectation is to be estimated on a large enough
validation set that is independent from the actual training set.
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Random subsampling

| | Testing
B Training
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Leave one out

| | Testing
B Training
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K-fold

| | Testing
B Training
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Cross-validation considerations

» For time series data data must be used in “chunks”
» Random sampling must be done without replacement
» Random sampling with replacement is the bootstrap
» Underestimates of the error
» Can be corrected, but it is complicated
(http://www.jstor.org/discover/10.2307/29657037uid=2&
uid=4&sid=21103054448997)
» For k-fold cross validation

» Large k: approximately unbiased predictor, but high variance
and potentially high computational cost

» Low k: biased predictor, but low variance and lower
computational cost
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http://www.jstor.org/discover/10.2307/2965703?uid=2&uid=4&sid=21103054448997
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Data splitting functions in Python

» Scikit-learn performs a (supervised) machine learning
experiment to hold out part of the available data as a test set

X_test, y_test.

» train_test_split, KFold, LeaveOneQOut,
TimeSeriesSplit

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.model_selection import KFold

X = np.array([[1, 2], [3, 4], [1, 2], [3, 411D

y = np.array([1, 2, 3, 4])

X_train, X_test, y_train, y_test = train_test_split(X, vy,
test_size=0.5, random_state=0)

print(X_train.shape, X_test.shape)

# ((2, 2), (2, 2))
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Data splitting functions in Python

# http://scikit-learn.org/stable/modules/cross_validation.html
kf = KFold(n_splits=2, random_state=None, shuffle=False) # Define 2 folds
kf.get_n_splits(X) # returns the number of splitting iterations
for train_index, test_index in kf.split(X):
print ("TRAIN:", train_index, "TEST:", test_index)

## ('TRAIN:', array([2, 3]), 'TEST:', array([0, 11))
## ('TRAIN:', array([0, 1]), 'TEST:', array([2, 31))
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Choosing R or Python for data analysis?

@ U9 °

R and Python are waging war:
while both programming languages are gaining prominence
in the data analytics community, they are fighting
to become data scientists' language of choice.

Which side are you taking?
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Choosing R or Python for data analysis?

>

Machine Learning -

It's up to you to choose

What problems do you have to solve?
Which language best fits your needs?
What are the costs to learn the language?
What is your community?

vV vy vy
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This lecture

Brief overview of supervised learning (HTF 2, 7.2)
Regularised regression (HTF 3.4)

Ridge regression (HTF 3.4.1)

Lasso shrinkage (HTF 3.4.2, 3.4.3)

vV vyYVyYyy
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General types of machine learning algorithms

Model Task
Supervised Learning Algorithms
Nearest Neighbor Classification
naive Bayes Classification
Decision Trees Classification
Classification Rule Learners Classification
Linear Regression Numeric
prediction
Regression Trees Numeric
prediction
Model Trees Numeric
prediction
Neural Networks Dual use
Support Vector Machines Dual use
Unsupervised Learning Algorithms
Association Rules Pattern detection
k-means Clustering Clustering
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Supervised learning

» Goal: from the database (learning sample), find a function h of
the inputs that approximates at best the output

» Numerical output: regression problem

» Symbolic output: classification problem

» Predictive: make predictions for a new sample described by its
attributes

» Supervised learning model

» given x input, features, predictors, independent variables
» and corresponding y output, response, dependent variables,

» we assume that y are observed (noisy) values of f(x) for some
f,

> we aim to estimate f by 3

» Financial Applications: time series analysis; fraud detection;
credit scoring; etc
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Supervised learning process (ref. HTF 7.2)

v

Define the learning problem
Generate or collect the data
Data preprocessing and splitting

vy

» Split the data into independent training and testing sets

v

Train the model

» Fit the model on the training set

v

Evaluate the performance

» Valiate the model on the testing set (estimate the prediction
error)

> If not satisfied go back to training

» If the model is chosen out of a few, compare them on a
validation set, that is independent from the training set, in
order to select the best one,

» Assess the final model (estimate the prediction error) on a
testing set.
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Evaluating the success of learning

> The model is tested on testing data

» How well its characterization of the training data generalizes to
the testing data

» Every learner has its weaknesses and biases

» Bias is associated with the abstraction and generalization
process

» Failure to generalize usually is caused by noisy data

Machine Learning - p6/25



Overfitting

¥ ¥ Y

X X
Underfitting Just right! overfitting

» Overfitting means the model does not generalize well
» The model performs well during training but does poorly during
testing overfitted to the training dataset
» Overfitting models the noise in data
> Noise is random by definition, attempting to explain the noise
will result in erroneous conclusions
» Overfitting results in more complex models that are more likely
to ignore the true pattern
» Solutions to overfitting are specific to particular machine
learning approaches
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Linear supervised learning

> Many real problems can be approximated with linear models.
» Linear prediction provides an example to many of the core
concepts of machine learning.
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Simple linear regression - training

First we generate some toy data in order to demonstrate the need
for regularisation. The residual standard error on the training set is
1.9211855. The regression is fairly accurate.
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Simple linear regression - testing
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» The sum of squares of the residuals on the testing set is
120.6703309.
> The estimates on the testing set are reasonably accurate.
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Making the data noisier

Now, we add some extra features in order to confuse the traditional
linear regression.

This mimics more realistic situations:

» the feature set is rich enough to contain the required
information

» but in contains information that may be redundant or may not
be relevant

On the next slides we demonstrate why it is problematic.
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Linear regression revisited - training
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» The sum of squares of the residuals is on the training set is
NaN.
» This seems to be a perfect fit.
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Linear regression revisited - testing
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» The sum of squares of the residuals on the testing set is
190749 (compare to errl.te above).
» The estimator is over-fitted to the training set.
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Regularised regression - background

Regularised regression models impose penalty on the regression
coefficients:
N p P
B=argmin{ > (vi—Bo— > xiB)>+AD_ 18]
B i=1 j=1 j=1
Where:

> the g = 2 case is referred to as Ridge regression
» the g =1 case is called Lasso (least absolute shrinkage and
selection operator) method

Alternatively, one can represent the optimisation problem as:
N P
o _ )
p= afgﬂm'" > (yi—Bo— D xiB))
Jj=1

i=1

P
subject to Z B9 < t.
j=1
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Ridge regression - derivation

The coefficients of the Ridge regression (g = 2) can be directly
computed.

> Step 1. B1 = yi = V.
» Step 2. Introduce the notation:

B=B)ly, y=(i— 7)1, x=(x)ij
Then, the objective function can be written as
(y—x8)"(y —xB) + A87 5,

and
B =(x"x+ )" xTy,

where | is the d x d identity matrix.
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Regularised regression - training with Lasso

10

predicted y-values

T T T T T
-5 0 5 10 15

exact y-values

» The perfect fit in the previous case used most of the variables
(see ‘summary(train2)’)

> In the case of Lasso regularisation, when most of the
coefficients are used, the penalty term blows up (see later).
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Regularised regression - Lasso, testing
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regularised regression does a decent job: err3.te=113.4797069
(compare to errl.te and err2.te above).
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Lasso as a shrinkage method

Regression coefficients
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Lasso as a shrinkage method
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Ridge regression - regularisation only
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Cross-validation - Lasso

Cross—validated mean error
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Linear regression in sklearn

import numpy as np

from sklearn import linear_model

from sklearn.metrics import mean_squared_error, r2_score
n_samples, n_features = 10, 5
np.random.seed (0)

y = np.random.randn(n_samples)

X = np.random.randn(n_samples, n_features)
1lm = linear_model.LinearRegression()
Im.fit(X,y)

predictions = lm.predict(X)
print(predictions)

## [ 1.40977378 0.05327317 0.87351204 2.3979991 1.72087882 -0.6431204
##  0.88107802 -0.51570968 0.28830167 0.91424518]

print (1m.coef_)

## [ 1.64120907 -0.19746253 -1.1360001  0.04967949 2.13178637]

print(mean_squared_error(y, predictions))

## 0.0959236070718

print(r2_score(y, predictions))

## 0.89743447524
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Ridge regression in sklearn

rlm = linear_model.Ridge(alpha=1.0)
rim.fit (X, y)

predictions = rlm.predict(X)
print(mean_squared_error(y, predictions))

## 0.295837585119

print(r2_score(y, predictions))

## 0.683678105029
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Lasso regression in sklearn

1lm = linear_model.Lasso(alpha=0.1)
1lm.fit(X,y)

predictions = 1llm.predict(X)
print(mean_squared_error(y, predictions))

## 0.444484380198

print(r2_score(y, predictions))

## 0.524738746861
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Further topics

» Elastic net (ref. HTF 3.4)

» Least angle regression and its relation to LASSO (ref. HTF
3.4.4)

» http://scikit-learn.org/stable/modules/linear_model.html
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Classification problem

v

Given {x;}N.; input, features, predictors, independent variables
Corresponding categorical y; € C output, response, dependent
variables,

Aim is to predict y given (out of sample) x, or

Estimate p(x) = P(y = ¢|x) for c € C

v

v Yy

» binary classification: |C| =2
» multiclass classification: |C| > 2, one vs. rest, one vs. one

Some methods:

> Logistic regression

» Classification tree

» Random forests

» Support vector machines
» Neural networks

> etc.
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Can we use linear regression?
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Can we use linear regression?
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» Linear regression does not estimate P(y = c|x) well.
Linear regression P(y = c|x) can go to infinite.
Linear regression is not appropriate multiple classification.
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Binary logistic regression

In the binary classification case, let C = {0,1}
Given x find p(x) = P(y = 1|x) where 0 < p(x) <1

Binary classification:

p(x) = sigmod(Bo + f7 x)

) 1
sigmod(z) = =
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Sigmod function

import matplotlib.pyplot as plt
import numpy as np
def sigmoid(z):

return 1.0 / (1.0 + np.exp(-z))
z = np.arange(-7, 7, 0.1)
phi_z = sigmoid(z)

-75 =50 =25 0.0 2.5 5.0 7.5
z
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Multiclass logistic regression

ICl=m
-
P(y = c; _ exp(Bio+0; x)
(y Cj ‘X) 1+ij:—11 eXP(BjO+BJTX) ’
Py = cmlx) =

1
=
1+ij:1 exp(Bjo+B] x)
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Decision boundary
Often the binary classification prediction is of the form:

s = {5

for some function p(x) € R and a well chosen threshold k.

X, 0 o

Xy
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Cost function

def cost_1(z):
return - np.log(sigmoid(z))
def cost_0(z):
return - np.log(l - sigmoid(z))
z = np.arange(-10, 10, 0.1)
phi_z = sigmoid(z)
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Cost function

Maximum likelihood is used to estimate the parameters:

0B8) = T] p(xi; 8) [T (@ — p(xi; B))

y=1 y=0

The log-likelihood can be written as
N
0(B) = yilog p(xi; B) + (1 — y;) log(1 — p(xi; 8))
i=1

N
=" yi(Bo + B xi) — log(1 + exp(Bo + B1 xi))
=1

» The max of ¢(3) can be approximated with Gradient descent,
Conjugate gradient, Newton-Raphson algorithm. (HTF4.4.1)
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Logistic regression

Logistic regression is implemented in the sklearn.linear_model
package in Python.

from sklearn.linear_model import LogisticRegression

1lr = LogisticRegression(C=1000.0, random_state=0)
lr.fit(X_train, y_train)
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Performance Evaluation - Confusion matrix

Prediction: Positive Prediction: Negative
Target cass: Positive True Positive (TP) False Negative (FN)
Target cass: Negative False Positive (FP) True Negative (TN)

Accuracy: |[TP+TN|/|M|

Precision: |TP|/|TP+FP]

Recall: |TP|/|TP-+FN|

F1 score: 2 x Precision x Recall/|Precision + Recall

vV vVvyYyywy
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Receiver operating characteristic (ROC)

» True positive rate: [true positive|/|positive|

» False positive rate: |false positive|/|negative|

» Evaluates (and compares) performance of f on a given
population {x;}V ;.

> Instead of fixing threshold k, ROC considers a whole range of
k's and for each value of k plots the false positive rate
against the true positive rate.

» Area under ROC curve (AUC) is used to summarize the
overall performance. Higher AUC is good.
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Receiver operating characteristic (ROC)

Densities of predictions (example 1)

= TPR
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Receiver operating characteristic (ROC)

ROC curve (example 1), AUC= 0.9392
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Receiver operating characteristic (ROC)

Densities of predictions (example 2)
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Receiver operating characteristic (ROC)

ROC curve (example 2), AUC= 1

1.0

0.8

0.6

True positive rate
0.4

0.2
|

T T T T T
0.0 0.2 0.4 0.6 0.8

False positive rate

Machine Learning - p17/41

1.0




Receiver operating characteristic (ROC)

Densities of predictions (example 3)
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Receiver operating characteristic (ROC)

ROC curve (example 3), AUC= 0.4972
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ROC in Python

from sklearn import svm, datasets

from sklearn import metrics

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_breast_cancer
import matplotlib.pyplot as plt

plt.clf()

breast_cancer = load_breast_cancer()
print(breast_cancer.feature_names)

## ['mean radius' 'mean texture' 'mean perimeter' 'mean area'

## 'mean smoothness' 'mean compactness' 'mean concavity'

## 'mean concave points' 'mean symmetry' 'mean fractal dimension'

## 'radius error' 'texture error' 'perimeter error' 'area error'

## 'smoothness error' 'compactness error' 'concavity error'

## 'concave points error' 'symmetry error' 'fractal dimension error'
## 'worst radius' 'worst texture' 'worst perimeter' 'worst area'

## 'worst smoothness' 'worst compactness' 'worst concavity'

## 'worst concave points' 'worst symmetry' 'worst fractal dimension']
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ROC in Python

X = breast_cancer.data

y = breast_cancer.target

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.33, random_state=44)
#sklearn. linear_model.LogisticRegression(penalty="12’, dual=False, tol=0.0001,

# C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None
#solver="warn’, maz_iter=100, multi_class=’warn’, verbose=0, warm_start=False, nﬁjobs:ane)
clf = LogisticRegression(penalty='12', C=0.1)

clf.fit(X_train, y_train)

y_pred = clf.predict(X_test)

print("Accuracy", metrics.accuracy_score(y_test, y_pred))

## ('Accuracy', 0.9521276595744681)
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ROC

in Python

y_pred_proba = clf.predict_proba(X_test)[::,1]
fpr, tpr, _ = metrics.roc_curve(y_test, y_pred_proba)

plt.

True Positive Rate

= metrics.roc_auc_score(y_test, y_pred_proba)

.plot(fpr,tpr,label="data 1, auc="+str(auc), color='red')
.plot ([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
.x1im([0.0, 1.0])

.ylim([0.0, 1.05]1)

.xlabel('False Positive Rate',fontsize=6)

.ylabel('True Positive Rate',fontsize=6)

.title('RoC example',fontsize=6)

.legend(loc="lower right",fontsize=6)

show ()

RoC example

1.0 4 —
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- -
- -
- -
0.5 A -
-
-
-
-
- -
- —— data 1, auc=0.992034313725
-
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0.0 0.2 0.4 0.6

False Positive Rate
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Classification tree

» Classification trees use splitting rules to segment the predictor
into regions Ri,..., Ry.
> We estimate

Py=clxeR)~ g > Wvi=q)=pj
X,'ERj

where N; = #{x; € R;}.
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Classification tree

Height > 180cm

Yes | No

Weight > 80kg

Male
Yes | No

Male Female
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Error functions

» Predicted class: i(j) = argmax; pj;.
» Measures of error Q(R;) = Q(j) in R;:

» Miss-classification error: 1 — Pji(j)»
» Gini index: Zlkczll pi(1 — pji)
» Cross-entropy: — E'kc:‘l pji log pji
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Classification tree - the algorithm

The exact optimum is expensive to compute. Good approximations
can be find.

Growing the tree
» The decision tree is determined by recursive partitioning

(splitting (sub)regions in two).
» For a given region R, find j and s, such that

Ri(j.s) == {xlx < s}, Ruliss) = {xilx] > s},
and j, s minimises:

[RiU, )| Q(RIU, 9)) + [Ru(, $)| QR 5))-

» Grow the tree until a minimum node size is reached.

Machine Learning - p26/41



Classification tree - the algorithm

Pruning the tree

» Given a large (over-fitted) tree Ty defined by the regions
Ry,... ,R|-,-0‘, find a sub-tree T, that minimises the cost
complexity criterion:

T

Z’V Q(Rm) + |T|.
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Classification tree - example

Sample data

points.2
0
|

points.1
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Classification tree - example - training

Tree

points. 1< -2.451
t

poimsl:zm

points.2f ~2.649

points.2)

=2.559
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Classification tree - fit on full tree

Predictions
©
<
N
N
[%]
£ o
o
o
N
|
<
|
©
]
-6 -4 -2 0 2 4 6
points.1

Accuracy on test set is 0.8245614 compared to 0.8576998 on
training set.
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Classification tree - example - pruning

Pruned tree

points. 1< -2.451
t

points. 1}

=2.848
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Classification tree - fit on pruned tree

Predictions
©
<
N
N
[%]
£ o
o
o
N
|
<
|
©
]
-6 -4 -2 0 2 4 6
points.1

Accuracy on test set is 0.8187135 compared to 0.8479532 on
training set.
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Classification Tree - Pros and Cons

» Tree methods are simple and useful for interpretation.

» Performance is not competitive with the best supervised
learning approaches.

» Bagging and boosting are used to grow multiple trees which
are combined to yield a single consensus prediction.

» Combining a large number of trees can often result in dramatic
improvements in prediction accuracy.
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Random Forests

Let the (weak) predictor be classification/regression tree T. The
aim is to build a large number of de-correlated trees and bag them.

The algorithm:

1. Form=1,...M

» draw a bootstrap sample S, from S of a predefined size.
> grow a tree T, to Sy, until a predefined minimum node size is
reached by repeating the following steps:

» select k factors/dimension at random out of d (X C RY),
» pick the best split point among the k,
» split the node into two child nodes.

2. Define the predictor £ by bagging {T,n}M_;.
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Random Forests

Properties:

» random forests tend to perform well on trees (that may be
noisy but have small bias),

» performance depends on the choice of k,
> best practice default value for k: |\/d| for classification,

> best practice default value for k: |d/3]| for regression.
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Python Examples - data preparation

from sklearn.cross_validation import train_test_split
from sklearn import datasets

iris = datasets.load_iris()

print(iris.feature_names)

## ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']

print(iris.target_names)

## ['setosa' 'versicolor' 'virginica'l

X = iris.data[:, [2, 3]]

y = iris.target

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=0)

from sklearn.preprocessing import StandardScaler

sc = StandardScaler()

sc.fit(X_train)

X_train_std = sc.transform(X_train)

X_test_std = sc.transform(X_test)

Machine Learning - p36/41



Python Examples - Logistic Regression

from sklearn.linear_model import LogisticRegression

1r = LogisticRegression(C=1000.0, random_state=0)
1r.fit(X_train_std, y_train)

y_pred = lr.predict(X_test)

print("Accuracy", metrics.accuracy_score(y_test, y_pred))

## ('Accuracy', 0.24444444444444444)

petal width [standardized]
°

0
petal length [standardized]
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Python Examples - Decision Tree

from sklearn.tree import DecisionTreeClassifier

# sklearn.tree.DecisionTreeClassifier(criterion="gini’, splitter=’best’, maz_depth=None,

# min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, maz_features=None,

# random_state=None, maz_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None,
# class_weight=None, presort=False)

tree = DecisionTreeClassifier(criterion='entropy', max_depth=2, random_state=1)
tree.fit(X_train, y_train)

y_pred = tree.predict(X_test)

print("Accuracy", metrics.accuracy_score(y_test, y_pred))

## ('Accuracy', 0.91111111111111109)

petal width [cm]
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Python Examples - Pruning tree

> Pruning helps us to avoid overfitting
» Any additional split that does not add significant value is not

worth while.
» Avoid overfitting by changing the parameters like
max_leaf_nodes, min_samples_leaf, max_depth

» max_leaf_nodes: Reduce the number of leaf nodes
» min_samples_leaf: Restrict the size of sample leaf
» max_depth: Reduce the depth of the tree to build a generalized

tree
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Python Examples - Random Forest

from sklearn.ensemble import RandomForestClassifier

# sklearn.ensemble.RandomForestClassifier(n_estimators=’warn’, criterion=’gini’, max_depth=None,

# min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, maz_features=’auto’,

# maz_leaf nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True,

# oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None)
forest = RandomForestClassifier(criterion='entropy',n_estimators=50, random_state=1)
forest.fit(X_train, y_train)

y_pred = forest.predict(X_test)

print("Accuracy", metrics.accuracy_score(y_test, y_pred))

## ('Accuracy', 0.97777777777777775)

petal width [cm]

Machine Learning - p40/41



Further topics

> k-nearest neighbour classifier (13.3 HTF)
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This lecture

» Support vector machines, linear & separable case (3.1-2
Burgess)

» Support vector machines, linear & non-separable case (3.5
Burgess)

» Support vector machines, non-linear case (4 Burgess)
» Examples

Main literature:

» A Tutorial on Support Vector Machines for Pattern Recognition

by C. Burgess, Data mining and knowledge discovery 2.2
(1998): 121-167.

Further read:

» The Elements of Statistical Learning by T. Hastie, R.
Tibshirani and J. Friedman, Second edition, Springer, 2009
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Support vector machine, separable case
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Support vector machine, separable case

Observations: points v; € R? and labels u; € {—1,1} for
i=1,...,N.

Linear decision function:

(w,vj)+b>0,foru =1
(w,v;) + b <0, for uy = —1

Several w, b suitable pairs may exist. Which one is the “best”?
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Support vector machine, separable case

<w,v>+b=0

y

-02 00 02 04 06 08 10 12
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Support vector machine - a bit of geometry

x| (w-x) +b=—1;

\
\

X1 (w-x)+b=+1}

3 e Note:
a5 (W-xq)+ b=+
o-- . ,¥x1 y; =+ (W-Xx,)+ b=
| X, oA N
2\ DN N
‘.‘ L] K \\\\ * ‘e = (w- (X1 - xg)) =2
! N w 2
== N (X .— -
Y LW | = (il ®17%)) = jji
5 Y \ .
T e XWX+ b=0}

HEARST, Marti A., et al., 1998. Support vector
machines. IEEE Intelligent Systems, 13(4), 18-28.
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Support vector machine, separable case

Formulation as an optimisation problem:

The aim is to find the separating hyper-plane with the largest
margin:
argmax H 1= argmln 2HWH2
w,b

constrained to:

(w,vi)+b>1, foru;=1
(w,v;) + b < -1, for uyj = -1

or in short:

ui({w,vi) +b)—1>0, fori=0,...,N.
The penalisation factor C is to be tuned by cross-validation.
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Support vector machine, separable case
Lagrangian formulation

N

N
Lp = JlwlP =3 aiuil(w. )+ )+

i=1 i=1
required: o; > 0fori=1,... N.
Karush-Kuhn-Tucker conditions (necessary and sufficient for convex
problems) for i =1,..., N:

N
9
g lp=w— Za,-u,—v,- =0,

i=1

N
0 _ E —
%LP = — aju; = 0,
i=1

ui({w,vi) + b) —1 >0,
a >0,
ai(ui({w,v;) + b) = 1) = 0.
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Support vector machine, separable case

The condition aj(u;({w, v;) + b) —1) = 0 implies that at least one of

> O[I':Ov

> ui((w,vi) + b) = 1
must hold.

If a; > 0, that is when v; is on the margin, then v; is a support
vector, hence the name.
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Support vector machine, separable case

From KKT, we have:
N
w = Z Qju;Vvi, (%)
i=1
N
0= Z ajuj. (**)
i=1

Dual problem

Maximise:

N
Lp = Za,- - %Za;aju;uJ-(v,-, vj).
i=1 i

subject to constraints (KKT).
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Support vector machine, non-separable case

Formulation as an optimisation problem:

In the non-separable case we allow points within the margin, but at
a cost/penalty:

N
argmin %HWHZ +C <Z§;> .
w,b i=1
constrained to:

(w,vi) +b>1—-¢;, foru =1
(w,vj) + b < —=1+¢, foruj=-1
>0, i=1,...,N
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Support vector machine, non-separable case

Lagrangian formulation:

N N
Lp=3wl?+CY &= ai{ui((w,vi) +b) —=1+&} = pit;.

i=1 i=1 i=1
The KKT conditions: for i =1,..., N (*), (**), and:

atlp=C—ai—pi=0,
ui({w,v;) + b) =1+ & > 0,

& >0,

a; > 0,

pi > 0,

aj{ui({w,vi) + b) =14+ &} =0,
pi&i = 0.
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Support vector machine, non-separable case

The condition a; {u;({w, v;) + b) — 1+ &;} = 0 implies that at
least one of

>« :0'
> U,'(<W, V,'> + b) =1 —g,'

must hold.

If a;j > 0, that is when v; is on the margin or on the wrong side of
the margin, then v; is a support vector.
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Support vector machine, non-separable case

Dual formulation:

Maximise:
N

LD = ZO(; — %Zaiajuiuj<via Vj>

i=1 ij

subject to
0 S Qi S C7

N
Z ajup = 0.
i=1
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Non-linear support vector machines

If a hyper-plane does not work on the original data in the original
space, it may work on the transformed data in another space.

That is, for some function ® : RY — #, a hyper-plane might be a
good separator, that maximises

N
Lp = Za; — %Zaiajuiuj<¢(vi)a q)(vj»
i=1 ij

subject to
0 <qa; < C?

N
Z aju; = 0.
i=1
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Non-linear support vector machines

Note that the optimisation depends on the v;'s only through:
(®(vi), (v)))-
Generalisation: replace the inner product with kernel

K(vi,vj).

Mercer’s condition: Given K(,), there exists a pair {H,®} such
that K(x,y) = (®(x), P(y)) if and only if

/g(x)zdx < 0o

implies
[ K y)gtg()dnay =0
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Non-linear support vector machines

Examples of kernel functions:

K(x,y) = (x,y)?, polynomial
K(x,y) = e—’y||x—y||27 radial basis

K(x,y) = tanh(k(x, y) — d), sigmoid
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SVM Classifier in sklearn

# SVM Classifier

from sklearn.svm import SVC

from sklearn import datasets

from sklearn import metrics

from sklearn.model_selection import train_test_split

iris = datasets.load_iris()

X = iris["data"][:, (2, 3)] # petal length, petal width

y = iris["target"]

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3)

# sklearn.sum.SVC(C=1.0, kernel=’rbf’, degree=3, gamma=’auto_deprecated’, coef0=0.0,
# shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None,
# verbose=False, maz_iter=-1, decision_function_shape=’ovr’, random_state=None)
svm_clf = SVC(kernel="linear", C= 5)

svm_clf.fit(X_train, y_train)

y_pred = svm_clf.predict(X_test)

print(”Accuracy”, metrics.accuracy_score(y_test, y_pred))

## ('Accuracy', 1.0)
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SVM Classifier in sklearn

2.00

1.754

1.504

1.254

1.00
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SVM Classifier in sklearn

from sklearn.datasets import make_moons
X, y= make_moons(n_samples=100, noise=0.15, random_state=42)
gammal, gamma2 = 0.1, 5
c1, €2 = 0.001, 1000
hyperparams = ((gammal, C1), (gammal, C2),
(gamma2, C1), (gamma2, C2))
svm_clfs = []
for gamma, C in hyperparams:
rbf _kernel_svm_clf =SVC(kernel="rbf", gamma=gamma, C=C)
rbf_kernel_svm_clf.fit(X, y)
svm_clfs.append (rbf_kernel_svm_clf)
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SVM Classifier in sklearn

y=0.1,C=0.001 y=0.1,C=1000
15 15
L] L]
L
1.0 1.0
ot ¥
" TanBy ; A " amBy ; A
05 ' Al L] 05 ah ]
X2 - - i mu 42 A X2 A mu 4a A
L]
L] A L] A L]
00{ ® "= Ak A { BT ¥ 00 A T Y
. L G N P . aas om0
Ap | M “Aﬁ Ap | M AAA’
-05 a -05 A
ATA # DN
-1.0 -1.0
-15 -10 -05 00 05 10 15 20 25 -15 -10 -05 00 05 10 15 20 25
s y=5,&s 0.001 s y=5,&¢ 1000
L] L]
L]
1.0
'.‘ l. l':} .
" Taufg F A
05 Ak ]
X2 L] l ] A4 A
L] A L]
0.0 aaha [ AT ¥
(] At SETL AL a
A
Ap M A 0
-05 »
A 4 A
-1 -1
-15 -10 -05 00 05 10 15 20 25 -15 -10 -05 00 05 10 15 20 25
X1 X1

Machine Learning - p21/22



Further topics

» Numerical implementation of SVM for large data-sets and/or
high dimensions (ref. 5 Burgess, 12.3.5 HFT)
» SVMs for regression (ref. 12.3.6 HTF)
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Artificial Intelligence

» The idea of Al is to teaching machine to behave more like the
human brain.
> Neural Networks move machine learning closer to Al.

» Make learning algorithms much better and easier to use.
» Make revolutionary advances in machine learning and
neuroscience.
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Single Neuron

In 1943, neurophysiologist Warren McCulloch and mathematician
Walter Pitts wrote a paper on how neurons might work. In order to
describe how neurons in the brain might work, they modeled a
simple neural network using electrical circuits !.

thttp:
//www.cs.cmu.edu/~. /epxing/Class /10715 /reading/McCulloch.and.Pitts.pdf
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Single Neuron

Impulses carried toward cell body

\ dendrite
\ presynapic

terminal

Impulses carried away
from cell body

wo
synapse

o

axon from a neuron

woZo

output axon

activation
function

» Input layer: An input X = (x1, ..., xn)
» Activation: weighted sum of input features
» Activation function: logistic function f(.) applied to the

weighted sum
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Multiple Input Neuron

Inputs x: _> Function Output
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Activation function

1)
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Activation functions

2

Hane Plot Equation Derivative
ity / f@)=z f@=1
ammes | [ @={] 250 rag{? o iZo
e (e = = £@) = 1@ - f@)
Tarn @)= tanbe) = o -1 F&)=1- fla)?
ArcTan / f(z)=tan"'(2) flz)y= I21+ 1
ra={2 o 250 re={1 & 250

Paraneteric

Rectified ar for <0 sy Ja for <0
Linear Unit f(r)—{ r for x>0 f(r)—{ 1 for >0
(PReLT) 2!
Exponential
i i _fale=1) for =<0 sy [ fl@)+a for <0
L(EL") [3]“ * — i) { z for x>0 =) { 1 for >0
» , 1
SoftPlus =as f(z) =log.(1+€") fl(zy= T

2https:/ /towardsdatascience.com
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Multilayer Perceptron (MLP)

input layer




Multilayer Perceptron (MLP)

» Feed-forward: MLP maps sets of input data onto a set of
appropriate outputs.

» Fully-connected: MLP consists of multiple layers of nodes in a
directed graph, with each layer fully connected to the next one.

» Nonlinear: Except for the input nodes, each node is a
neuronwith a nonlinear activation function.

» Backpropagation: MLP utilizes backpropagation for training
the network.
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ForwardFeeding

hW,b(x)

Layer Ly

Layer L, LayerL,

a® = fWPx1 + Wxa + W3'xs + b{)
a? = fWPx1 + Wipxa + Wi xs + b))
aP = fWPx1 + Wipxa + Wxs + b))
hwp@) = @ = fWPa? + WPa? + WPa? + bP)
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Backpropagation (BP)

» BP is a common method of training artificial neural networks.
> BP propagates the errors backward and adjust the weights.

» BP is normally used with an optimization method such as
gradient descent.

» BP calculates the gradient of a loss function with respect to all
the weights in the network.

» The gradient is fed to the optimization method which in turn
uses it to update the weights, in an attempt to minimize the
loss function.
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Back Propagation

1
JW, b%,y) = |lhws@ =y

J(W,b) = [% iJ(W b; x, (0)] 21 jz 2 wo)’
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i=1 l—l i=l j=1

Machine Learning - p12/27



Back Propagation

2
O = wh - b
vVE] “]y aam‘gl) J(Ws )
b = b - a1, b)
ob,
2w, by = | =3 2 _gW,b;x0,y0) | + 2w
ow?® m = aw /
ij i= ij
21w, 5) =~ 3 W, b;x9,y9)
ob; M 21 0b;
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Back Propagation
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MLP example - generating data

from sklearn.datasets import make_moons

from sklearn.model_selection import train_test_split

import matplotlib.pyplot as plt

X, y = make_moons(n_samples=500, noise=0.2, random_state=18)

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)

15

1.0

0.5

X2

0.0

-1.0
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MLPClassifier in sklearn

from sklearn.neural_network import MLPClassifier

#MLPClassifier(hidden_layer_sizes=(100, ), activation=’relu’, solver=’adam’, alpha=0.0001, batch_size=’aut(
#learning_rate=’constant’, learning_rate_init=0.001, power_t=0.5, maz_iter=200, shuffle=True, random_state:
#t01=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False
#validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08, n_iter_no_change=10)

mlp = MLPClassifier(hidden_layer_sizes=(10, 10, 10), max_iter=1000)

mlp.fit(X_train, y_train)

predictions = mlp.predict(X_test)

from sklearn.metrics import accuracy_score

from sklearn.metrics import classification_report, confusion_matrix
print(accuracy_score(y_test,predictions))

## 0.952
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MLPClassifier in sklearn

15
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Tips on MLPClassifier

» Multi-layer Perceptron is sensitive to feature scaling, so it is
highly recommended to scale your data.

» Sale each attribute on the input vector X to [0, 1] or [-1, +1],
or standardize it to have mean 0 and variance 1.

» Finding a reasonable regularization parameter using
GridSearchCV

» L-BFGS converges faster and with better solutions on small
datasets. For relatively large datasets, however, Adam is very
robust. It usually converges quickly and gives pretty good
performance. SGD with momentum or nesterov’'s momentum,
on the other hand, can perform better than those two
algorithms if learning rate is correctly tuned.
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Visualizing Neural Nets

Regularization rate Problem type

s erations Learning rate Actiation Reguiarzation
»
000,000 003 < Tanh < None - 0 Classification
FEATURES + — 2 HIDDEN LAYERS OUTPUT
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xz [T
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http://playground.tensorflow.org is a website where you can tweak

and visualize neural networks.
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TensorFlow

» TensorFlow is an open source software library for numerical
computation using data flow graphs.

» TensorFlow was originally developed by researchers and
engineers working on the Google Brain Team within Google's
Machine Intelligence.

» The flexible architecture allows you to deploy computation to
one or more CPUs or GPUs in a desktop, server, or mobile
device with a single API.
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Keras

» Keras is a high-level neural networks API, written in Python
and capable of running on top of TensorFlow, CNTK, or

Theano.
» Keras is developed with a focus on enabling fast

experimentation.
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Keras in Python

import numpy as np
import matplotlib.pyplot as plt
from keras.datasets import mnist

## Using TensorFlow backend.

from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.utils import np_utils
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Keras - load data

nb_classes = 10
(X_train, y_train), (X_test, y_test) = mnist.load_data()
print("X_train original shape", X_train.shape)

## ('X_train original shape', (60000, 28, 28))

print("y_train original shape", y_train.shape)

## ('y_train original shape', (60000,))
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Keras - data preprocessing

X_train = X_train.reshape (60000, 784)

X_test = X_test.reshape(10000, 784)

X_train = X_train.astype('float32')

X_test = X_test.astype('float32')

X_train /= 255

X_test /= 255

print("Training matrix shape", X_train.shape)

## ('Training matrix shape', (60000, 784))

print("Testing matrix shape", X_test.shape)

## ('Testing matrix shape', (10000, 784))
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Keras - build model

model = Sequential()

model.add(Dense (512, input_shape=(784,)))
model.add(Activation('relu'))

model.add (Dropout (0.2))

# Dropout helps protect the model from memorizing

# or "overfitting" the training data
model.add(Dense(10))

model.add(Activation('softmax'))

# This special "softmaz" activation among other things
# ensures the output is a valid probaility distribution
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Keras - train the model

model.compile(loss='categorical_crossentropy',
optimizer='adam',metrics=['accuracy'])
model.fit(X_train, Y_train,
batch_size=128, nb_epoch=4,
verbose=0,
validation_data=(X_test, Y_test))
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Keras - evaluate the model

score = model.evaluate(X_test, Y_test, verbose=0)
print(score[1])

## 0.9805

Predlcted 7, Class 7 Pred|cted 2, Class 2 Pred|cted 1, Class 1

FEredlctEd 0, (Ess 0

FEred|ct1@d 4, (lass 4

F8red|ctlﬂd 1, Glss 1

10

20

FEredlctEd 4, (Mass 4

FEred|ct1@d 9, Clss 9

F8red|ctlﬂd 5, @ss 5

10

0
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Deep Learning in Finance

Al applications in financial services

@

Robo-advice

)
o

AML and
fraud detection

Custormer
recommendations

&tbn!s

Algorithmic
trading
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Deep Neural Networks (DNNs)

[nput Layer Hidden Layers Output Layer

(depends on the
system’s
dimension)

X

Xa2
X3 . PN
Control parameter 4 -

» DNN is ANN with multiple hidden layers of units between the
input and output layers.
» DNNs can model complex non-linear relationships.

» DNNs are designed as feedforward and backpropagation
networks.
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Vanishing/Exploding Gradients Problem

> X. Glorot and Y. Bengio found this problem in 2010 in paper
“Understanding the difficulty of training deep feedforward neural
networks".

» For DNNs gradients often get vanishing/exploding as the
algorithm progresses down to the many layers.

» For RNN long term dependencies can not be efficiently
captured.
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Activation functions

» The sigmoid function is continuous and differentiable but it
saturates at 0 or 1, with a derivative extremely close to 0.

> The RelLU function suffers from a problem known as the dying
ReLUs, i.e. some neurons stop outputting anything rather than

0.

» The variant of the ReLU function is used to sovle the gradient
problems, such as LeakyRelLU,(z) = max(az, z).

Activation functions

Derivatives

10

0.5

—— Step
-—- Sigmed
—— Tanh
—:= RelU

12

10

0e

0.6

04

02

0.0
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Convolutional Neural Network (CNN)

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky llva Sutskever GeolTrey E. Hinton
University of Toronto University of Toronto University of Toronto
4 t 4 nt . 1 ilyvae « Ut 4 nt . 1 int necs.ut nt

ImageNet 2012 i
classification
compctition results ]
1] ¢

Oxlord INRIA Amsterdam

SuperVision
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Problem for Image Recognition

FULLY CONNECTED NEURAL NET LOCALLY CONNECTED NEURAL NET

Example: 1000x1000 image
1M hidden units
- 10”12 parameters!!!

Example: 1000x1000 image

M hidden units
Filter size: 10x10
100M parameters

- Spatial correlation is local

- Better to put resources elsewhere! Rert
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Convolutional Neural Network (CNN)

» CNN is a type of feed-forward artificial neural network.

» The connectivity pattern between its neurons is inspired by the
organization of the animal visual cortex.

» CNN is a variation of multilayer perceptrons designed to use
minimal amounts of preprocessing.

» CNN has wide applications in image and video recognition,
recommender systems and natural language processing.

Input Feature maps Feature maps Feature maps Feature maps Qutput
24x24 4@20x20 4@10x10 8@86x8 B@4x4 20@1x1
Ll —

Convolution Subsampling Convolution Subsampling Convolution
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Convolutional Neural Network (CNN)

By Moonshile

! L
Y T Y Y

Image Convolution Layers Rasterization MLP with Softmax

Fig. 1 CNN Structure
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Convolutional Neural Network (CNN)
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Convolutional Neural Network (CNN)
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Convolutional Neural Network (CNN)
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Convolutional Neural Network (CNN)

Pooling

maximum

1
Wl 011 011 ﬁ—n.u
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Convolutional Neural Network (CNN)
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Convolutional Neural Network (CNN)




Convolutional Neural Network (CNN)

Why Deep Learning?

The Unreasonable Effectiveness of Deep Features

® & o o o L]
dog bird invertebrate vehicle good, covering building
commodity

Low-level: Pools High-level: FC¢
Classes separate in the deep representations and transfer to many tasks.
[DeCAF] [Zeiler-Fergus]

Machine Learning - p16/29



CNN in Keras

from keras.layers import ConvolutioniD, MaxPoolinglD
model = Sequential()
model.add(ConvolutioniD(input_shape = TRAIN_SIZE,
nb_filter=64,
filter_length=2,
border_mode='valid',
activation='relu',
subsample_length=1))
model.add(MaxPoolinglD(pool_length=2))
model.add(Dense (250))
model.add (Dropout (0.25))
model.add(Activation('relu'))
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CNN Example

What Technical Traders Are Looking For

| ﬂ)
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Recurrent Neural Network (RNN)

» RNN is a class of artificial neural network where connections
between units form a directed cycle.

» Unlike feed-forward neural networks, RNNs can use their
internal memory to process arbitrary sequences of inputs.

» RNN is applicable to tasks such as sequential data processing.

h =g(W - x +@. +ba))

x(t) x(t-1) x(t) x(t+1)
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Mac

Recurrent Neural Network (RNN)!

many to one many to many

.

] DO O 00O
0 0 Bon 6o

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Recurrent Neural Network (RNN)?

target chars:

output layer

hidden layer

input layer

input chars:

2http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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RNN Example - Shakespeare 3
Train with 3-layer RNN with 512 hidden nodes on each layer

VIOLA:

Why, Salisbury must find his flesh and thought
That which | am not aps, not a man and in fire,

To show the reining of the raven and the wars

To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;

When | was heaven of presence and our fleets,

We spare with hours, but cut thy council | am great,
Murdered and by thy master's ready there

My power to give thee but so much as hell:

Some service in the noble bondman here,

Would show him to her wine.

KING LEAR:

O, if you were a feeble sight, the courtesy of your law,

Your sight and several breath, will wear the gods

With his heads, and my hands are wonder'd at the deeds,

So drop upon your lordship's head, and your opinion

Shall be against your honour,.
3http://karpathy.github.io/2015/05/21 /rnn-effectiveness/
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Long-Short-Term-Memory in RNN*

___________________________________ prediction

selection
() >

s

.- «—1 collected
possibilities

-

: forgetting é ]
memory P

filtered
possibilities

ignoring

2\ :

possibilities

*Cristopher Olah, “Understanding LSTM Networks" (2015)
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Long-Short-Term-Memory in RNN®

i = 0 (Wt + Wighyot + Waici1 + b))
fi= U("}j:l'i + ‘Vhfhi,l + ‘Vrf(?t71 +bf)
¢ = fiep_1 + iy tanh (Woezy + Wichy 1 + be)
Tt 0p =0 (Weozt + Wiohi—y + Weeer + b,)

h; = oy tanh(¢;)

®Cristopher Olah, “Understanding LSTM Networks" (2015)
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LSTM in Keras

from keras.layers.recurrent import LSTM

model = Sequential()

model.add (LSTM(input_shape = (EMB_SIZE,),
input_dim=EMB_SIZE, output_dim=HIDDEN_RNN,
return_sequences=True))

model.add (Dense (1))

model.add(Activation('linear'))
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LSTM Example

Algebraic Geometry

For @, Where £,,, = 0, hence we can find a closed subset H in # and
any sets F on X, U is a closed immersion of S, then U — T is a separated algebraic
space.

Proof. Proof of (1). It also start we get

S=Spec(R) =U xx U xx U
and the comparicoly in the fibre product covering we have to prove the lemma
generated by [[Z xy U — V. Consider the maps M along the set of points
Schyppy and U — U is the fibre category of S in U in Section, ?? and the fact that
any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any
open subset W C U in Sh(G) such that Spec(R') — S is smooth or an

U= UU xs, Ui

which has a nonzero morphism we may assume that ; s of finite presentation over
S. We claim that Ox,; is a scheme where z,2",5” € S’ such that Ox o — Oy, . is
separated. By Algebra, Lemma ?? we can define a map of complexes GLg: (z'/S")
and we win.
To prove study we see that F|y is a covering of A", and 7 is an object of Fx/s for
i >0 and F, exists and let F; be a presheaf of Ox-modules on C as a F-module.
In particular F = U/F we have to show that

M* = T° @spectty 05,5 = ix'F)
is & unique morphism of algebraic stacks. Note that

Arrows = (Sch/S). (Sch/S) s

and
V =TI(S,0) — (U.Spec(4))

is an open subset of X. Thus U is affine. This is a continuous map of X is the

inverse, the groupoid scheme 5.

Proof. See discussion of sheaves of sets. o

The result for prove any open covering follows from the less of Example ?2. It may
replace S by Xupaces étate which gives an open subspace of X and T equal to Szar,
see Descent, Lemma ??. Namely, by Lemma ?? we sce that R is geometrically
regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.

Suppose X = lim |X| (by the formal open covering X and a single map Proj, (A) =
Spec(B) over U compatible with the compler
Set(A) = T(X.Ox,0,)-

When in this case of to show that Q — Cz/x is stable under the following result
in the second conditions of (1), and (3). This finishes the proof. By Definition 77
(without element is when the closed subschemes are catenary. If T is surjective we
may assume that T is connected with residue fields of S. Morcover there exists a
closed subspace Z C X of X where U in X' is proper (some defining as a closed
subset of the uniqueness it suffices to check the fact that the following theorem

(1) f is locally of finite type. Since S = Spec(R) and Y = Spec(R).

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a
surjective étale morphism U — X. Let UNU = [[,,. ., Us be the scheme X over
S at the schemes X; — X and U = lim, X; o

The following lemma surjective restrocomposes of this implies that F., = F, =
X

Lemma 0.2. Let X be a locally Noctherian scheme over S, E = Fy/s. Set T =

J\ CT,. Since I" C I" are nonzero over io < p is a subset of Jnq 0 Ay works.

Lemma 0.3. In Situation ??. Hence we may assume q' = 0.

Proof. We will use the property we see that p is the mext functor (7?). On the
other hand, by Lemma ?? we see that

D(0x) = Ox(D)
where K is an F-algebra where 4,4, is a scheme over S. a

®http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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LSTM Example - Linux Source Code ’
Train 474MB of C code with 3-layer LSTMs

static int indicate_policy(void)
{

int errer;

if (fd == MARN_EPT) {

if (ss->segment < mem total)
unblock_graph_and_set_blocked();

else
ret = 1;
goto bail;

}
segaddr = in_SB(in.addr);
selector = seg / 16;
setup_works = true;
for (i = 0; i < blocks; i++) {
seq = buf[i++];
bpf = bd->bd.next + i * search;

if (£d) {
current = blocked;
}
}
rw->name = "Getjbbregs”;

bprm_self clearl(&iv->version);
regs->new = blo:ks[(BPF_S‘I’A’I’S << info->historidac)] | PFMR_CLOBATHINC_SECONDS << 12;
return segtable;

"http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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LSTM Example - Time series

— True Data
2 \ Prediction

20

[ o 20 3 4 0 6 M 0 1w 20 0 4 % 6 7

(a) Test Data SPY: Feature-Selected LSTM (b) Test Data AAPL: Feature-Selected Vanilla RNN

Figure 3.5: Predictions vs True Data for feature-selected models
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Further Readings

» Deep Learning By lan Goodfellow and Yoshua Bengio and
Aaron Courville MIT Press, 2016

> Neural Networks and Deep Learning By Michael Nielsen,
Online book, 2016

> Learning Deep Architectures for Al By Yoshua Bengio, NOW
Publishers, 2009
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