

Mechanistic Models of Deformation Twinning and Martensitic Transformations

Bob Pond

Acknowledge: John Hirth



# **Classical Model (CM)**

Geometrical – invariant plane

# **Topological Model (TM)**

Mechanistic

- coherent interfaces, interfacial line-defects





S

Twinning : e.g. G. Friedel, 1926

PTMC : WLR and BM, 1953



Twinning dislocation: e.g. F.C. Frank, 1949 (disconnection)

Bilby & Crocker, 1965

Martensitic Transformations Pond and Hirth, 2003



# Interfacial defect character and kinetics

# Admissible interfacial defects





*Operation characterising defect* 

# Thermally activated disconnections

- activation energy at fixed stress ~  $b^2$
- > loop nucleation rate,  $\dot{N}$ , reasonable for small b

• defect mobility,  $\dot{G}$ 

### $\succ$ enhanced by larger core width, w, which is promoted by small h

### simple shuffles



#### Motion of a twinning disconnection in a (1012) twin



#### Atom Tracking: Shear and Shuffle Displacements in (1012)Twin



4 distinct atoms





Ζ

"swapping"





### Deformation twins in Ni<sub>2</sub>MnGa



Disconnection  

$$b = \frac{1}{12} [10\overline{1}] = 0.072 nm$$

$$h = d_{(202)} = 0.211 nm$$

$$\gamma = \frac{b}{h} = 0.34$$



# Twin tip in Ni<sub>2</sub>MnGa



 $g = 20\overline{2}$ 

Muntifering et al. 2014

HAADF STEM (Titan PNNL)



# Topological model for type II twinning

#### Classical Model: irrational plane of shear







Knowles, 1982

(a)

(b)









## Type II: growth



### Experimental observations: e.g. $\alpha - U$

| <i>K</i> <sub>1</sub> | <i>K</i> <sub>2</sub> | $oldsymbol{\eta}_1$ | type     | <i>b</i><br>nm | h<br>nm | γ     | No. dist.<br>atoms | Ġ/Ņ  |
|-----------------------|-----------------------|---------------------|----------|----------------|---------|-------|--------------------|------|
| "{176}"               | {111}                 | 1/2 < 512 >         | Ш        | 0.098          | 0.456   | 0.216 | 4                  | low  |
| "{172}"               | {112}                 | 1/2 < 312 >         | П        | 0.081          | 0.356   | 0.228 | 4                  | low  |
| {1 <del>3</del> 0}    | {110}                 | 1/2 < 310 >         | compound | 0.048          | 0.161   | 0.299 | 2                  | high |



 $\alpha - U, Cahn$  1953





# Topological model of martensitic transformations

### PTMC



Shape deformation

 $P_1 = RBP_2 = (I + dp')$ 

#### ΤM

- low energy terraces (coherently strained epitaxial)
- two defect arrays: disconnections & LID
- distortion field of defect network accommodates coherency strains
- motion of all defects produces shape deformation



### **Glissile Disconnections**

Ti 10 wt % Mo Klenov 2002



### Distortion field of a Defect Array



$$\boldsymbol{D}^{m}(x',y',z') = \begin{pmatrix} \epsilon'_{xx} & \epsilon'_{xy} & \epsilon'_{xz} \\ \epsilon'_{xy} & \epsilon'_{yy} & \epsilon'_{yz} \\ \epsilon'_{xz} & \epsilon'_{yz} & \epsilon'_{zz} \end{pmatrix} + \begin{pmatrix} 0 & -\omega'_{xy} & \omega'_{xz} \\ \omega'_{xy} & 0 & -\omega'_{yz} \\ -\omega'_{xz} & \omega'_{yz} & 0 \end{pmatrix}$$

 $\epsilon'_{xx} = b_x/d$   $\omega'_{yz} = b_z/2d$ 

Equilibrium: superposed coherency and defect array distortion fields



$$\boldsymbol{D}_{ij}^{\prime m} = \begin{pmatrix} D_{xx}^{\prime m} & D_{xy}^{\prime m} & D_{xz}^{\prime m} \\ D_{xy}^{\prime m} & D_{yy}^{\prime m} & D_{yz}^{\prime m} \\ D_{xz}^{\prime m} & D_{yz}^{\prime m} & D_{zz}^{\prime m} \end{pmatrix} = -\boldsymbol{D}_{ij}^{\prime c}$$

Solve the Frank-Bilby Equation for the defect array with long-range distortion matrix,  $D'^m_{ij}$ , which compensates  $D'^c_{ij}$ .

### Habit plane orientation



 $\begin{array}{ll} \beta \ crystal: \ \Theta \ - \ \varphi & homogeneous \\ \alpha \ crystal: \ \Theta \ + \ \varphi & isotropic \\ approximation \end{array}$ 

inhomogeneous anisotropic case rotations partitioned according to relative elastic compliances

TM solutions for habit plane orientation differ slightly from PTMC, unless  $\boldsymbol{b}_n = 0$ 



#### Partitioning of rotations



molecular dynamic simulation of static Cu(111)/Ag(111) interface, Wang et al. 2011

| Case                     | $\phi_{Cu}$ | $\phi_{Ag}$ | φ     | $-\phi_{Ag}/\phi_{Cu}$ |
|--------------------------|-------------|-------------|-------|------------------------|
| Isotropic, inhomogeneous | 0.449       | -0.698      | 1.15  | 1.55                   |
| Anisotropic              | 0.504       | -0.853      | 1.36  | 1.69                   |
| MD                       | 0.483       | -0.929      | 1.41  | 1.92                   |
| MD (Artificial)          | 0.665       | -0.659      | 1.312 | 0.97                   |

#### Orthorhombic to Monoclinic Transformation in ZrO<sub>2</sub>



#### synchronous motion of disconnections



Chen and Chiao, 1985



$$\Gamma_m^D = \begin{pmatrix} 0 & 0 & \gamma_{xz} \\ 0 & 0 & \gamma_{yz} \\ 0 & 0 & \varepsilon_{zz} \end{pmatrix} = \frac{\delta y}{d^D} \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix}^D \begin{pmatrix} 0 & 0 & n_z \end{pmatrix}$$





#### Lath martensite in ferrous alloys









#### TEM: LID slip dislocations



 $1/2[111]_{\alpha}$  dislocations, ~10° from screw, with spacing 2.8 -6.3 nm Fe-20Ni-5Mn (Sandvik and Wayman, 1983)

### TEM: Disconnections in near screw orientation





Moritani et al. Fe-Ni-Mn

 $[-101]_{\gamma}$  projection





#### Plate Martensite

~{121}



Ogawa and Kajiwara, 2004 Fe-Ni-Mn

## Conclusions

Topological modelling provides insights into mechanisms and kinetics.

Twinning:

proposed new model of type II twin formation.

Martensite:

predicted interface structures consistent with observations,

predicted habits differ slightly from PTMC.

