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Plan of Lecture

The lecture will have three parts:

Part 1: Introduction to the Einstein equations and related PDEs.

Part 2: Positive mass theorems.

Part 3: Mass/angular momentum inequalities.



Part 1: Introduction to the Cauchy problem

We first recall the basic set up in General Relativity.

Mathematical Model: S4 is a smooth manifold with a Lorentz
signature metric g . This means that for any point p ∈ S we can
find a Lorentz basis e0, e1, e2, e3 for the tangent space so that
gab = εaδab where ε0 = −1 and εi = 1 for i = 1, 2, 3.
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The Einstein Equations

Matter in relativity is represented by tensor fields over S, and the
spacetime metric g represents the gravitational field. The matter
fields evolve from initial data via their equations of motion, and
the gravitational field evolves via the Einstein equation

Ric(g)− 1

2
R g = 8πT

where Ric denotes the Ricci curvature and R = Trg (Ric(g)) is the
scalar curvature.

When there are no matter fields present the right hand side T is
zero, and the equation reduces to

Ric(g) = 0.

These equations are called the vacuum Einstein equation.
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Initial Data

The solution is determined by initial data given on a spacelike
hypersurface M3 in S.

The fields at p are determined by initial data in the part of M
which lies in the past of p.

The initial data for g are the induced (Riemannian) metric, also
denoted g , and the second fundamental form p. These play the
role of the initial position and velocity for the gravitational field.
An initial data set is a triple (M, g , p).
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The Constraint Equations
Using the Einstein equations together with the Gauss and Codazzi
equations, the constraint equations may be written

µ =
1

16π
(RM + Trg (p)2 − ‖p‖2)

Ji =
1

8π

3∑
j=1

∇jπij

for i = 1, 2, 3 where πij = pij − Trg (p)gij .

In case there is no matter present, the vacuum constraint
equations become

RM + Trg (p)2 − ‖p‖2 = 0

3∑
j=1

∇jπij = 0

for i = 1, 2, 3 where RM is the scalar curvature of M.
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Energy Conditions

For spacetimes with matter, the stress-energy tensor is normally
required to satisfy the dominant energy condition which says
that the energy-momentum density 4-vector of the matter fields is
non-spacelike for any observer. For an initial data set this is the
inequality µ ≥ ‖J‖.

In the time symmetric case (p = 0) the dominant energy condition
is equivalent to the inequality RM ≥ 0. In case the maximal case
Trg (p) = 0 the dominant energy condition implies RM ≥ 0
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Mean curvature in relativity

The notion of trapped surface is related to black holes in relativity
and this is expressed in terms of a mean curvature inequality:

H(Σ)− TrΣ(p) < 0

means that a surface Σ is outer trapped. If the initial data
contains such a surface the spacetime will become singular.

PDEs related to the mean curvature which are important in GR:
• H(Σ) = 0, minimal surface equation, stability is key
• H(Σ)− TrΣ(p) = 0, MOTS equation, stability
• Inverse mean curvature flow,

∂X

∂t
=

1

H
ν(X (t)).
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Asymptotic Flatness
The most natural boundary condition for the Einstein equations is
the condition of asymptotic flatness. This boundary condition
describes isolated systems which are the analogues of finite mass
distributions in Newtonian gravity. The requirement is that the
initial manifold M outside a compact set be diffeomorphic to the
exterior of a ball in R3 and that there be coordinates x in which g
and p have appropriate falloff

gij = δij + O2(|x |−1), pij = O1(|x |−2).



Asymptotic Flatness
The most natural boundary condition for the Einstein equations is
the condition of asymptotic flatness. This boundary condition
describes isolated systems which are the analogues of finite mass
distributions in Newtonian gravity. The requirement is that the
initial manifold M outside a compact set be diffeomorphic to the
exterior of a ball in R3 and that there be coordinates x in which g
and p have appropriate falloff

gij = δij + O2(|x |−1), pij = O1(|x |−2).



Minkowski and Schwarzschild Solutions

The following are two basic examples of asymptotically flat
spacetimes:

1) The Minkowski spacetime is Rn+1 with the flat metric
g = −dx2

0 +
∑n

i=1 dx2
i . It is the spacetime of special relativity.

2) The Schwarzschild spacetime is determined by initial data with
p = 0 and

gij = (1 +
E

2|x |n−2
)

4
n−2 δij

for |x | > 0. It is a vacuum solution describing a static black hole
with mass E . It is the analogue of the exterior field in Newtonian
gravity induced by a point mass.
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ADM Energy and Linear Momentum

For general asymptotically flat initial data sets there is a notion of
total (ADM) energy-momentum. These quantities are computed in
terms of the asymptotic behavior of g and p. For these definitions
we fix asymptotically flat coordinates x and we set
π = p − Tr(p) g .

E = 1
2(n−1)ωn−1

lim
r→∞

∫
|x |=r

n∑
i ,j=1

(gij ,i − gii ,j)ν
j
0 dσ0

Pi = 1
(n−1)ωn−1

lim
r→∞

∫
|x |=r

n∑
j=1

πijν
j
0 dσ0, i = 1, 2, . . . , n

These limits exist under quite general asymptotic decay conditions.
For the constant time slices in the Schwarzschild metric we have
E = m. Generally (E ,P) can be thought of as a 4-vector in the
asymptotic Minkowski space, and for a more general slice in these
spacetimes we have m =

√
E 2 − |P|2.
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Part 2: An improved positive mass theorem

We will describe the proof of the following theorem due to (EHLS)
M. Eichmair, L. Huang, D. Lee, and the speaker (arXiv:1110.2087).

Theorem (Spacetime positive mass theorem)

Let 3 ≤ n < 8, and let (M, g , k) be an n-dimensional
asymptotically flat initial data set satisfying the dominant energy
condition. Then

E ≥ |P|,

where (E ,P) is the ADM energy-momentum vector of (M, g , k).



Previous Results

Our theorem is an improvement of earlier results.

• R ≥ 0 implies E ≥ 0 by S & Yau for 3 ≤ n < 8. This includes
the maximal (and Riemannian) case.

• Dominant energy condition implies E ≥ 0. Done by S & Yau for
n=3, and the method extended recently by Eichmair for 3 < n < 8.

• For spin manifolds of any dimension E ≥ |P| follows from
argument of E. Witten.

• For n = 3, the statement R ≥ 0 implies E ≥ 0 also follows from
the inverse mean curvature flow by an argument proposed by R.
Geroch and made rigorous by G. Huisken & T. Ilmanen. The
argument also gives more quantative statements such as the
Penrose inequality in case M has a compact connected outermost
minimal boundary (black hole).



The Stability Condition

The stability condition for minimal hypersurfaces expresses the
condition that the second variation of volume is non-negative for
variations of Σ. It may be written∫

Σ
[‖∇ϕ‖2 − (‖A‖2 + Ric(ν, ν))ϕ2] dv ≥ 0

for all functions ϕ of compact support. This expresses the
condition that the second variation of volume is nonnegative for a
variation in the direction ϕ · ν where ν is a unit normal vector to Σ.

Using the Gauss equation the stability condition may be written∫
Σ

[‖∇ϕ‖2 − 1

2
(RM − RΣ + ‖A‖2)ϕ2] dv ≥ 0.
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Stable MOTS

For the MOTS equation

H(Σ)− TrΣ(p) = 0

there is a notion of stability which is essentially the condition that
Σ lies in a local foliation Σt with Σ0 = Σ so that

H(Σt)− TrΣt (p) < 0 for t < 0, and > 0 for t > 0.

By an interesting calculation this implies an eigenvalue condition of
the form∫

Σ
[‖∇ϕ‖2 − 1

2
((µ− |J|)− RΣ + ‖A− p‖2)ϕ2] dv ≥ 0

for ϕ with compact support.
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Finding stable MOTS; the Jang equation

It is more difficult to solve H − TrΣ(p) = 0 since it does not arise
from a variational principle.

The speaker and Yau reduced the spacetime positive energy
theorem to the Riemannian case by constructing a graphical
solution of this equation on M × R; this is the Jang equation

div(
∇f√

1 + |∇f |2
) =

3∑
i ,j=1

(g ij − f i f j

1 + |∇f |2
)pij .

The left hand side is the mean curvature of the graph of f and the
right hand side is the trace of (the extended) p along the graph.
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Blow-up on stable MOTS
The only known way to construct stable MOTS is by constructing
solutions of the Jang equation which blow up on an interface
which is then a stable MOTS.



EHLS Proof of the Spacetime Positive Mass Theorem

We assume we are in special asymptotics and we show that if
E < |P| then we have the picture (reminiscent of the Riemannian
case)

This is based on the calculation in special asymptotics on the
hyperplanes xn = Λ where we have chosen coordinates for which P
points in the positive xn direction. The proof involves a study of
asymptotically planar stable MOTS.
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The use of stability

In three dimensions it is possible to use the stability condition
together with the Gauss-Bonnet theorem to show that there can be
no asymptotically planar stable MOTS in an initial data set
satisfying the dominant energy condition.

For n ≥ 4 an additional difficulty appears since we need some
variations which do not have compact support; that is, we need to
construct a strongly stable MOTS in the sense that we can allow
variations which are vertical translations near infinity.This was
accomplished by an extra minimization in the Riemannian case. An
interesting and subtle feature of the argument is that we are able
to accomplish this even though the equation is not variational.

If we have E < |P|, we construct a strongly stable MOTS Σ and
use the strong stability condition to find an asymptotically flat
metric on Σ with R = 0 and E < 0. This contradicts the
Riemannian postive energy theorem in dimension n − 1.
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Key technical ingredients

• A perturbation theorem to simplify the asymptotics keeping the
constraint equations valid. This is an example of a density theorem
for the constraint equations.

• Constructing Barriers and proving existence of stable MOTS
which are asymptotically planar.

• For n ≥ 4 we need to choose the height correctly in order that
our stable MOTS is strongly stable in the sense that we can allow
a variation which is a vertical translation near infinity.



Key technical ingredients

• A perturbation theorem to simplify the asymptotics keeping the
constraint equations valid. This is an example of a density theorem
for the constraint equations.

• Constructing Barriers and proving existence of stable MOTS
which are asymptotically planar.

• For n ≥ 4 we need to choose the height correctly in order that
our stable MOTS is strongly stable in the sense that we can allow
a variation which is a vertical translation near infinity.



Key technical ingredients

• A perturbation theorem to simplify the asymptotics keeping the
constraint equations valid. This is an example of a density theorem
for the constraint equations.

• Constructing Barriers and proving existence of stable MOTS
which are asymptotically planar.

• For n ≥ 4 we need to choose the height correctly in order that
our stable MOTS is strongly stable in the sense that we can allow
a variation which is a vertical translation near infinity.



Part 3: Mass/angular momentum inequalities: the Kerr
Solutions

There is a family of solutions depending on two parameters m and
α where m is mass and |J| = α2 is the angular momentum. These
reduce to the Schwarzschild solution when α = 0 and they
represent stationary rotating black hole solutions. In order to
represent black hole solutions it is necessary that the Kerr
constraint

√
|J| ≤ m hold.

The Kerr metric is given in coordinates (t, r , φ, θ) by

g = −dt2+
2mr

ρ2
(α sin2 φdθ−dt)2+ρ2(

dr 2

∆
+dφ2)+(r 2+α2) sin2 φdθ2

where ρ2 = r 2 + α2 cos2 φ and ∆ = r 2 − 2mr + α2. In order for
the metric to be nonsingular in these coordinates we require
r > m +

√
m2 − α2, the largest root of ∆(r).
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ADM angular momentum

Recall the definition of the energy and linear momentum.

E =
1

16π
lim

R→∞

∮
|x |=R

∑
i ,j

(gij ,i − gii ,j) ν
jdσg

Pi =
1

8π
lim

R→∞

∮
|x |=R

∑
j

πijν
jdσg , i = 1, 2, 3

Under appropriate asymptotic conditions the angular momentum
can be defined in a similar way.

J =
1

8π
lim

R→∞

∮
|x |=R

∑
j ,k

πjkY jνkdσg

where Y = ∂
∂x i
× ~x (cross product) is the oriented rotation vector

field around the x i -axis.
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Some background

Since the Kerr solutions are the expected final states of
gravitational collapse, it is important to be able to characterize
them in a robust way. For example, does the restriction

√
|J| ≤ m

hold for a natural class of dynamical solutions?

• It was shown by X. Zhang in 1999 that the Kerr constraint holds
for general data which satisfy an energy condition which is more
stringent than the dominant energy condition.
• It was shown by S. Dain in 2008 that a large class of
(non-stationary) axisymmetric vacuum black hole solutions do
satisfy the Kerr constraint. The work was extended by P.
Chruściel, J. Costa, Y. Y Li, L. Nguyen, G. Weinstein.
• We will describe recent joint work with Xin Zhou
(arXiv:1209.0019) which proves all of the known results in a
stronger form by a simpler argument.
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Axisymmetric data and maps to the hyperbolic plane

Given a maximal (Tr(p) = 0) vacuum initial data (M, g , p) with a
spacelike Killing vector field η having closed orbits, we may
associate a map (X ,Y ) : M → H2 where

H2 = {(X ,Y ) : X > 0}, X−2(dX 2 + dY 2)

where X = ‖η‖2 and 1
2 dY = ∗(iηh ∧ η#). The 1-form defining Y

is closed because of the vacuum constraint equations and the
maximal condition.

The map (X ,Y ) is harmonic if and only if (M, g , p) defines a
stationary solution of the vacuum Einstein equations.
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Extreme Kerr as a Harmonic Mapping

There is a classical description (due to B. Carter) of the Kerr
solution as a harmonic mapping u0 from R3 into the hyperbolic
plane H2 = {(X ,Y ) : X > 0} with metric X−2(dX 2 + dY 2).
Explicitly we have the extremal Kerr solution (m =

√
|J|)

corresponding to u0 = (X0,Y0) where

X0 =
(
r̃ 2 + |J|+ 2|J|3/2r̃ sin2 θ

Σ

)
sin2 θ

Y0 = 2J(cos3 θ − 3 cos θ)− 2J2 cos θ sin4 θ

Σ

and
r̃ = r +

√
|J|, Σ = r̃ 2 + |J| cos2 θ, (1)

where r , θ, ϕ are spherical coordinates in R3 and J is the angular
momentum of the Kerr solution.

Note that u0 is singular at the origin (if J 6= 0), and X0 vanishes
along the z axis Γ like ρ2 where ρ = r sin θ.
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The Brill Initial Data Sets
The axisymmetric, maximal solutions of the vacuum constraint
equations also have descriptions as (non-harmonic) maps
u = (X ,Y ) : R3 → H2. There is a large class of black hole
solutions with angular momentum J which are asymptotic to the
extreme Kerr solution. These give rise to maps u which are
asymptotic to u0 near Γ. The maps u and u0 have infinite energy,
but there is a natural renormalized energy M(u). This is defined
by writing x = log X − g where g = 2 log ρ. We then define

M(u) =

∫
R3

[|∇x |2 + X−2|∇Y |2] dµ.

We have thatM(u0) is finite, andM(u) is also finite provided that
x − x0 ∈ H1(R3), (x − x0)− ∈ L∞(R3), and Y − Y0 ∈ H1

X0
(R3 \ Γ)

defined as the completion of C∞c (R3 \ Γ) with respect to the norm

‖f ‖2
X0

=

∫
R3

X−2
0 |∇f |2 dµ.
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solutions with angular momentum J which are asymptotic to the
extreme Kerr solution. These give rise to maps u which are
asymptotic to u0 near Γ. The maps u and u0 have infinite energy,
but there is a natural renormalized energy M(u). This is defined
by writing x = log X − g where g = 2 log ρ. We then define

M(u) =

∫
R3

[|∇x |2 + X−2|∇Y |2] dµ.

We have thatM(u0) is finite, andM(u) is also finite provided that
x − x0 ∈ H1(R3), (x − x0)− ∈ L∞(R3), and Y − Y0 ∈ H1
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Properties of the Renormalized Energy

If we take a domain Ω which is compactly contained in R3 \ Γ,
then we have that EΩ(u) and MΩ(u) differ by a boundary term.
(This uses the fact that log ρ is a harmonic function in R3.) It
follows that the two functionals have the same stationary maps;
that is, the harmonic maps.

It turns out that the renormalized energy is related to the mass.
First we have M(u0) = m0 =

√
|J|, and we have the following

inequality.

Theorem (D. Brill, S. Dain) For the data described above we have
m ≥M(u)

Thus the inequality m ≥
√
|J| follows if we can show that

M(u) ≥M(u0) for the maps which arise from our data. Thus the
mass/angular momentum inequality follows from the condition
that the harmonic map u0 minimizes its renormalized energy in an
appropriate class of competing maps.
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Convexity of the Renormalized Energy

There is a convexity result for the renormalized energy which
generalizes convexity for maps from compact manifolds to
manifolds of non-positive curvature.

Theorem (R. S. & Xin Zhou) Assume that u0 = (X0,Y0) is the
extremal Kerr map, and that u1 = (X1,Y1) is another map with
x1 − x0 ∈ H1(R3), (x1 − x0)− ∈ L∞(R3), and
Y1 − Y0 ∈ H1

X0
(R3 \ Γ). If ut is the geodesic path of maps from u0

to u1, then we have

d2

dt2
M(ut) ≥ 2

∫
R3

‖∇d(u0, u1)‖2.

The proof uses the same basic calculation as in the compact case,
but requires a delicate argument to handle the singularity. The
explicit nature of the singularity and the specifics of geodesics in
H2 is used.
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A Quantitative Version of the Mass/Angular Momentum
Inequality

We may now apply the Sobolev inequality to prove the following.

Theorem (R. S. & Xin Zhou) Assume that u0 = (X0,Y0) is the
extremal Kerr map, and that u1 = (X1,Y1) is another map with
x1 − x0 ∈ H1(R3), (x1 − x0)− ∈ L∞(R3), and
Y1 − Y0 ∈ H1

X0
(R3 \ Γ). We have the bound

M(u1)−M(u0) ≥ C‖d(u0, u1)‖2
L6

where C = 3
4 (2π2)2/3.

Corollary If u1 corresponds to a Brill data set with mass m and
angular momentum J, then it follows that

m −
√
|J| ≥ C‖d(u0, u1)‖2

6.
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Extensions of the results

P. Chruściel and his collaborators (Y. Li and G. Weinstein) gave a
strong generalization by allowing asymptotic behavior which
corresponds to general (non-extreme) Kerr data. Chruściel and J.
Costa also extended the bound to the Einstein/Maxwell case. We
also treat these cases and improve the results and simplify the
proofs by the convexity method.



Non-axisymmetric solutions

A joint work of L. H. Huang, M. Wang, and the speaker
(arXiv:1008.4996, appeared in CMP) shows that the angular
momentum and center of mass can be arbitrarily specified for
asymptotically flat vacuum solutions of the Einstein equations.

Theorem (L. H. Huang, R. S., M. Wang) Let (g , p) be a nontrivial
vacuum initial data set satisfying appropriate asymptotic
conditions. Given any constant vectors ~α0, ~γ0 ∈ R3, there exists a
vacuum initial data set (ḡ , p̄) which is a perturbation of (g , p) so
that

E = E , P = P,

and
J = J + ~α0, C = C + ~γ0.
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Open questions

• Prove the inequality without the maximal assumption Tr(p) = 0.
X. Zhou posted a paper where he proves the inequality assuming
smallness of Tr(p). Can the formal spacetime argument of finding
a maximal slice be made rigorous?

• Does the mass/angular momentum inequality hold for other
natural classes of data? How about almost axisymmetric?

• Can the inequality be proven for data with a black hole
boundary? The current results require complete data with multiple
ends.
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